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In Chapter 5 we saw that variation occurs when we use a sample instead of the entire 
population. For example, in the presentation of the binomial distribution, we saw that 
the sample estimates of the population proportion varied considerably from sample to 
sample. In this chapter, we present prediction, confi dence, and tolerance intervals, 
quantities that allow us to take the variation in sample results into account in describing 
the data. These intervals represent specifi c types of interval estimation — the provision 
of limits that are likely to contain either (1) the population parameter of interest or (2) 
future observations of the variable. Interval estimation thus provides more information 
about the population parameter than the point estimation approach that we met in 
Chapter 3. In that chapter, we provided a single value as the estimate of the population 
parameter without giving any information about the sampling variability of the estima-
tor. For example, knowledge of the value of the sample mean, a point estimate of the 
population mean, does not tell us anything about the variability of the sample mean. 
Interval estimation addresses this variability.

7.1   Prediction, Confi dence, and 
Tolerance Intervals

The material in this and the following section is based on material presented by 
Vardeman (1992) and Walsh (1962). To understand the difference between these three 
intervals (prediction, confi dence, and tolerance), consider the following. Dairies add 
vitamin D to milk for the purpose of fortifi cation. The recommended amount of vitamin 
D to be added to a quart of milk is 400  IUs (10  mg). If a dairy adds too much vitamin 
D, perhaps over 5000  IUs, the possibility exists that a consumer will develop hypervi-
taminosis D — that is, vitamin D toxicity.

A prediction interval focuses on a single observation of the variable — for example, 
the amount of vitamin D in the next bottle of milk. A confi dence interval focuses on a 
population parameter — for example, the mean or median amount of vitamin D per 
bottle in a population of bottles of milk. Thus, the prediction interval is of more interest 
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170  Interval Estimation

to the consumer of the next bottle of milk, whereas the confi dence interval is of more 
interest to the dairy. A tolerance interval provides limits such that there is a high level 
of confi dence that a large proportion of values of the variable will fall within them. For 
example, besides being interested in the mean, the dairy owner or a regulatory agency 
also wants to be confi dent that a large proportion of the bottles’ vitamin D contents are 
within a specifi ed tolerance of the value of 400  IUs. We begin our treatment of these 
intervals with distribution-free intervals.

7.2   Distribution-Free Intervals
When the method for forming the different intervals is independent of how the data are 
distributed, the resultant intervals are said to be distribution free. Distribution-free 
intervals are based on the rank order of the sample values, with the following notations 
for rank order. The smallest of the x values is indicated by x(1), the second smallest by 
x(2), and so on, to the largest value that is denoted by x(n). The x(i) are called order sta-
tistics, since the subscripts show the order of the values.

We shall use hypothetical data showing the amount of vitamin D in 30 bottles 
of milk selected at random from one dairy. The values are shown in rank order in 
Table 7.1.

Based on this sample, x(1) equals 289  IUs, x(2) is 326  IUs and so on to x(30), which 
equals 485  IUs.

Table 7.1 Values of vitamin D (IUs) in a hypothetical sample of 
30 bottles.

289 355 376 392 406 433
326 363 379 395 410 434
339 364 384 396 413 456
346 370 386 398 422 471
353 373 389 403 427 485

7.2.1   Prediction Interval

As a consumer of milk, our major concern about vitamin D is that the milk does not 
contain an amount of vitamin D that is toxic to us. We are not too concerned about there 
being too little vitamin D in the bottle. Based on the hypothetical sample of vitamin D 
contents in 30 bottles of milk, we can form a one-sided prediction interval — our 
concern focuses on the upper limit — for the amount of vitamin D in the bottle of milk 
that we are going to purchase.

A natural one-sided prediction interval in this case is from 0 to the maximum 
observed value of vitamin D (485  IUs) in the sample. The level of confi dence associated 
with this interval, from 0 to 485  IUs, is 96.8 percent (= 30/31). This value can be found 
from the consideration of the order statistics and the real number line. For example, we 
have the line

 |__1__|__2__|__3__|_________________|__30__|__31__
 0 x(1) x(2) x(3) .  .  .  .  . x(30)
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Distribution-Free Intervals  171

and there are 31 intervals along this line. The vertical marks (|) indicate the location of 
the order statistics along the line, and the numbers above the line between the |’s indicate 
the interval number. There are 31 intervals, and the next observation can fall into any 
one of the intervals. Of these 31 intervals, 30 have values less than the maximum value. 
Hence, we are 96.8 percent confi dent that the vitamin D content in the next bottle will 
be between zero and the observed maximum value.

Note that we used the word confi dence instead of probability here. We use confi dence 
because we are using the sample data as the basis of estimating the probability distribu-
tion of the vitamin D content. If we used the probability distribution of the vitamin D 
content instead of using its sample estimate, the empirical distribution function, we 
would use the word probability. In repeated sampling, we expect that 96.8 percent of 
the prediction intervals, ranging from zero to the observed maximum in each sample 
of size 30, would contain the next observed vitamin D content.

The use of the second largest value, x(29), as the upper limit of the interval results in 
a prediction confi dence level of 93.5 percent (= 29/31). An attraction of this interval is 
that it provides a slightly shorter interval with a maximum of 471  IUs, but we are slightly 
less confi dent about it. Based on either of these intervals, the consumer should not be 
worried about purchasing a bottle that has a value of vitamin D that would cause vitamin 
D poisoning.

For a two-sided interval, a natural interval would be from the minimum observed 
value, x(1), to the maximum observed value, x(30). In this case, the two-sided interval is 
from 289 to 485  IUs. The confi dence level associated with this prediction interval is 
93.5 percent (= 29/31). Of the 31 intervals just shown, there is one below the minimum 
value and one above the maximum value. Hence, there are 29 chances out of 31 that the 
next observed value will fall between the minimum and maximum values.

With a sample size of 30, it is not possible to have a distribution-free, two-sided, 95 
percent prediction interval. The smallest sample size that attains the 95 percent level is 
39. When n is 39, there are 40 intervals, and 2/40 equals 0.05. This calculation shows 
that it is easy to determine how large a sample is required to satisfy prediction interval 
requirements.

7.2.2   Confi dence Interval

The dairy wants to know, on average, how much vitamin D is being added to the milk. 
If the interval estimate for the central tendency differs much from 400  IUs, the dairy 
may have to change its process for adding vitamin D. One way of obtaining the interval 
estimate is to use a distribution-free confi dence interval.

Distribution-free confi dence intervals are used to provide information about popula-
tion parameters — for example, the median and other percentiles. There are two 
approaches to fi nding confi dence intervals for percentiles: (1) the use of order statistics 
and (2) the use of the normal approximation to the binomial distribution. The fi rst 
approach is generally used for smaller samples, whereas the second approach is used 
for larger samples.

Use of Order Statistics and the Binomial Distribution: The lower and upper limits 
of the (1 − a)100 percent confi dence interval for the pth percentile of X are the order 
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172  Interval Estimation

statistics x(j) and x(k), where the values of j and k, j less than k, are to be determined. 
The limits of the confi dence interval for the pth percentile of X are the values x(j) and 
x(k) that satisfy the following inequality:

 Pr{x( j) < pth percentile < x(k)} ≥ 1 − a

and this is equivalently

 Pr{x( j) ≥ pth percentile} + Pr{x(k) ≤ pth percentile} ≤ a

If we require that both terms in the sum be less than or equal to a /2, from the fi rst 
term, we have

 Pr{at most j − 1 observations < pth percentile} ≤ a /2.

This is a situation with two outcomes: an observation is less than the pth percentile, 
or it is greater than or equal to the pth percentile. The probability that an observation 
is less than the pth percentile is p. The variable of interest is the number of observations, 
out of the n, that are less than the pth percentile. Thus, this variable follows a binomial 
distribution with parameters n and p. Knowing the values of n and p enables us to fi nd 
the value of j because j must satisfy the following inequality:

 

n

i n i
p pi n i

i

j !

! !
.

−( )
−( ) ≤−

=

−

∑ 1 2
0

1

α

The inequality used to fi nd the value of k is

 

n

i n i
p pi n i

i k

n !

! !
.

−( )
−( ) ≤−

=
∑ 1 2α

Putting these two inequalities together means that the binomial sum from j to k − 1 
must be greater than or equal to 1 − a. Here we have dropped the requirement that the 
sums of the probabilities from 0 to j − 1 and from k to n both must be less than a /2. 
The values of j and k are found from the binomial table, Table B2, or by using a computer 
package such as SAS or Stata.

For example, suppose we want to fi nd a 95 percent confi dence interval for the median, 
the 50th percentile, for the vitamin D values from the dairy used in Table 7.1. The sample 
estimate of the median is the average of the 15th and 16th smallest values — that is, 
390.5  IUs (= [389 + 392]/2).

To fi nd the 95 percent confi dence interval for the median in the population of bottles 
of milk from the selected dairy, we use the binomial distribution. For this problem we 
need a binomial distribution with n = 30 and p = 0.5, shown in Table 7.2. Since Table 
B2 does not have values for n larger than 20, we used SAS to obtain the distribution. 
The order and observations from Table 7.1 are also shown in the last two columns in 
Table 7.2. There may be more than one pair of values of j and k that satisfy the require-
ment that the sum of the binomial probabilities from j to k − 1 is greater than or equal 
to 1 − a. To choose from among these pairs, we shall select the pair whose difference 
(k − j) is the smallest. In the special case of the median, we shall require that k equals 
n − j + 1; this requirement gives the same number of observations in both tails of the 
distribution.
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The sum of the probabilities from j to k − 1 must be greater than or equal to 0.95. 
Examination of the cumulative probabilities tells us that j is 10 and k is 21. The sum of 
the probabilities between 10 and 20 is 0.9572 (= 0.9786 − 0.0214). If j were 11 and k 
were 20, the sum of the probabilities between 11 and 19 is 0.9012, less than the required 
value of 0.95. Thus, the approximate 95 percent (really closer to 96%) confi dence inter-
val for the median is from 373  IUs (= x(10)) to 406  IUs (= x(21)). The use of distribution-
free intervals does not necessarily provide intervals that are symmetric about the sample 
estimator. For example, the sample median value, 390.5  IUs, is not in the exact middle 
of the confi dence interval.

Note that the confi dence interval for the median is much narrower than the approxi-
mate 95 percent prediction interval, from 289 to 485  IUs, for a single observation. As 
we saw in Chapter 3, there is much less variability associated with a mean or median 
than with a single observation, and this is additional confi rmation of that.

As we can observe from the preceding, the use of distribution-free intervals does not 
provide exactly 95 percent levels. The level of confi dence associated with these intervals 
is a function of the sample size as well as which order statistics are used in the creation 
of the interval.

It is also possible to create one-sided confi dence intervals for parameters. For example, 
if the goal were to create an upper one-sided confi dence interval for the median, we 
would fi nd the value of k such that

Table 7.2 Cumulative binomial distribution with n = 30 and 
p = 0.5 and sorted observations in Table 7.1.

x Pr (X £ x) No. Observation

 0 0.0000 1 289
 1 0.0000 2 326
 2 0.0000 3 339
 3 0.0000 4 346
 4 0.0000 5 353
 5 0.0002 6 355
 6 0.0007 7 363
 7 0.0026 8 364
 8 0.0081 9 370
 9 0.0214 10 373
10 0.0494 11 376
11 0.1002 12 379
12 0.1808 13 384
13 0.2923 14 386
14 0.4278 15 389
15 0.5722 16 392
16 0.7077 17 395
17 0.8192 18 396
18 0.8998 19 398
19 0.9506 20 403
20 0.9786 21 406
21 0.9919 22 410
22 0.9974 23 413
23 0.9993 24 422
24 0.9998 25 427
25 1.0000 26 433
26 1.0000 27 434
27 1.0000 28 456
28 1.0000 29 471
29 1.0000 30 485
30 1.0000
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for a p having the value of 0.50. The upper one-sided confi dence interval for the median 
is from 0 to x(k) where k’s value is found from the above inequality.

Use of the Normal Approximation to the Binomial: For larger sample sizes, the 
normal approximation to the binomial distribution can be used to fi nd the values of j 
and k. The sample size must be large enough to satisfy the requirements for the use of 
the normal approximation. Since p is 0.50, the sample size of 30 bottles from the dairy 
is large enough.

As before, we want to fi nd the value of j such that the probability of the binomial 
variable, Y, being less than or equal to j − 1 is less than or equal to a /2 — that is,

 Pr {Y ≤ j − 1} ≤ a /2.

Use of the continuity correction converts this to

 Pr {Y ≤ j − 0.5} ≤ a /2.

To convert Y to the standard normal variable, we must subtract np, the estimate of the 
mean, and divide by np p1−( ) , the estimate of the standard error. This yields
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If we change this inequality to equality — that is, the probability is equal to a /2 — we 
can fi nd a unique value for j. The value of the term on the right side of the inequality 
inside the brackets is simply za /2, and hence we can fi nd the value of j from the 
equation

 j np z np p− − = −( )0 5 12. α

or

 j z np p np= −( ) + +α 2 1 0 5. .

In the preceding example, p was 0.50, n was 30, and a was 0.05. Since the value of 
z0.025 is −1.96, we have

 j = − ( )( ) + + ( )1 96 30 0 5 0 5 0 5 30 0 5. . . . .

or j is 10.13. To ensure that the level of the confi dence interval is at least (1 − a)  *  100 
percent, we must round down the value of j to the next smaller integer, 10, and we round 
up the value of k, found following, to the next larger integer.

The value of k is found from the equation

 k z np p np= −( ) + +−1 2 1 0 5α .
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which yields a k equal to 20.87, which is rounded to 21. Thus, the 95 percent confi dence 
interval is from 373  IUs (= x(10)) to 406  IUs (= x(21)). In this case, the binomial and the 
normal approximation approaches resulted in the same confi dence limits.

7.2.3   Tolerance Interval

As we said before, tolerance intervals are of most interest to the dairy or to a regulatory 
agency. The tolerance limits are values such that we have a high level of confi dence that 
a large proportion of the bottles have vitamin D contents located between the lower and 
upper tolerance limits. These upper and lower limits of the tolerance interval can be 
used in determining whether or not the process for adding vitamin D is under control. 
If the limits are too wide, the dairy may have to modify its process for adding vitamin 
D to the milk.

The dairy does not want to add too much vitamin D to the milk because of the pos-
sible problems for the consumer and the extra cost associated with using more vitamin 
D than required. At the same time, the dairy must add enough vitamin D to be in com-
pliance with truth in advertising legislation.

As with the prediction interval, it is reasonable to use the smallest and largest 
observed values for the lower and upper limits of the tolerance interval, although other 
values could be used. We also have to specify the proportion of the population, p, that 
we want to include within the tolerance interval. Given the tolerance interval limits and 
the proportion of values to be included within it, we can calculate the confi dence level, 
g, associated with the interval.

In symbols, the tolerance interval limits are the order statistics x(j) and x(k) such 
that

 Pr [Pr{X ≤ x(k)} − Pr{X ≤ x(j)} ≥ p] = g.

The quantity, Pr{X ≤ x(k)} − Pr{X ≤ x(j)}, is the proportion of the population values con-
tained in the tolerance interval for this sample. Let us call the above quantity Wkj. In 
symbols we then have Pr{Wkj ≥ p} = g. The variable Wkj is either less than p or greater 
than or equal to p. This is a binomial situation, and, therefore, we can use the same 
approach as in the confi dence interval section to fi nd the value of g. The value of g can 
be expressed in terms of the binomial summation as
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If we use the minimum, x(1), and the maximum, x(n), for the limits, k − j − 1 becomes 
n − 1 − 1, which equals n − 2. It is therefore easy to fi nd the value of this summation 
for i ranging from 0 to n − 2 because that sum is equal to 1 minus the binomial sum 
from n − 1 to n. In symbols, the value of g is

 1 − [pn] − [npn−1(1 − p)].

Suppose we want our tolerance interval to contain 95 percent of the observations. 
Let’s calculate the confi dence level associated with the tolerance interval of 289 to 
485  IUs. In this case, n is 30 and p is 0.95. The value of g is found by taking 1 − 0.9530 
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− 30(0.95)29(1 − 0.95), which equals 0.4465. There is not a high level of confi dence 
associated with this tolerance interval. This confi dence level is contrasted with the 0.935 
level associated with the prediction interval. It is not surprising that the confi dence level 
of the prediction interval is much higher than that of the tolerance interval because the 
prediction interval is based on the location of a single future value whereas the tolerance 
interval is based on the location of a large proportion of the population values.

The interval from 289 to 485  IUs is the widest interval we can have using the sample 
data since these are the minimum and maximum observed values. We can increase our 
confi dence by either (1) decreasing p, the proportion of the population to be included in 
the tolerance interval or (2) by taking a larger sample.

Let us reduce p to 90 percent. The confi dence level for this interval is increased to 
0.8162, a much more reasonable value. Instead of reducing p, let us increase the sample 
size from 30 to 60. The confi dence level associated with the increased sample size is 
0.8084, also a much more reasonable value. Table 7.3 shows the sample size required to 
have 90, 95, and 99 percent confi dence associated with tolerance intervals that have 80, 
90, 95, and 99 percent coverage of the distribution, based on the use of x(1) and x(n).

Table 7.3 Sample size required for the tolerance 
interval to have the indicated confi dence level for the 
specifi ed coverage proportions based on the use of x(1) 
and x(n).

Coverage Confi dence Level

Proportion 90% 95% 99%

0.80  18  22  31
0.90  38  46  64
0.95  77  93 130
0.99 388 473 662

From these calculations and the general formula for calculating, we can see the rela-
tionships between p, the values of k and j, n and g. We can investigate the values of 
these quantities before we have performed the study and can modify the proposed study 
design if we are not satisfi ed with the values of p and g.

A one-sided tolerance interval is sometimes of interest. Suppose that there was inter-
est in the upper one-sided tolerance interval. In this case, the tolerance interval ranges 
from 0 to x(n) and the confi dence associated with this interval is found by taking 1 − pn 
— that is, one minus the binomial term calculated for i equal to n.

7.3   Confi dence Intervals Based on the 
Normal Distribution

If the data are from a known probability distribution, knowledge of this distribution 
allows more informative (smaller) intervals to be constructed for the parameters of 
interest or for future values. We begin this presentation by showing how to create con-
fi dence intervals for a variety of population parameters, assuming that the data come 
from a normal distribution. The central limit theorem and the sampling distribution of 
statistics (e.g., sample mean) presented in Chapter 5 provide the rationale for interval 
estimation based on the normal distribution. Following the material on confi dence 
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intervals, we show how to use the normal distribution in the creation of prediction and 
tolerance intervals. We begin the confi dence interval presentation with the population 
mean and follow it with the confi dence interval for the population proportion that can 
also be viewed as a mean.

7.3.1   Confi dence Interval for the Mean

In the preceding material, we saw how to construct a confi dence interval for the popula-
tion median. That confi dence interval gave information to the dairy about the amount 
of vitamin D being added to the milk. As an alternative to the median, a confi dence 
interval for the mean could have been used. To fi nd a confi dence interval for the mean, 
assuming that the data follow a specifi c distribution, we must know the sampling dis-
tribution of its estimator. We must also specify how confi dent we wish to be that the 
interval contains the population parameter. The sample mean is the estimator of the 
population mean, and the sampling distribution of the sample mean is easily found.

Since we are assuming the data follow a normal distribution, the sample mean — the 
average of the sample values — also follows a normal distribution. However, this 
assumption is not crucial. Even if the data are not normally distributed, the central limit 
theorem states that the sample mean, under appropriate conditions, will approximately 
follow a normal distribution.

To specify the normal distribution completely, we also have to provide the mean and 
variance of the sample mean. First we develop the confi dence interval for the mean 
assuming population variance is known and extend it to the situation where population 
variance is unknown and it is estimated from the sample.

Known Variance: In Chapter 5, we saw that the mean of the sample mean was m , 
the population mean, and its variance was s2/n. The standard deviation of the sample 
mean is thus s / n , and it is called the standard error of the sample mean (x–). The use 
of the word error is confusing, since no mistake has been made. However, it is the tra-
ditional term used in this context. The term standard error is used instead of standard 
deviation when we are discussing the variation in a sample statistic. The term standard 
deviation is usually reserved for discussion of the variation in the sample data them-
selves. Thus, the standard deviation measures the unit-to-unit variation, while the stan-
dard error measures the sample-to-sample variation.

We now address the issue of how confi dent we wish to be that the interval contains 
the population mean (m). From the material on the normal distribution in Chapter 5, we 
know that

 Pr {−1.96 < Z < 1.96} = 0.95

where Z is the standard normal variable. In terms of the sample mean, this is
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But we want an interval for m , not for Z. Therefore, we must perform some algebraic 
manipulations to convert this to an interval for m. First we multiply all three terms inside 
the braces by s / n . This yields
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We next subtract x– from all the expressions inside the braces, and this gives
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This interval is about −m ; to convert it to an interval about m , we must multiply each 
term in the brackets by −1. Before doing this, we must be aware of the effect of multi-
plying an inequality by a minus number. For example, we know that 3 is less than 4. 
However, −3 is greater than −4, so the result of multiplying both sides of an inequality 
by −1 changes the direction of the inequality. Therefore, we have
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We reorder the terms to have the smallest of the three quantities to the left — that 
is,
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The (1 − a)  *  100 percent confi dence interval limits for the population mean can be 
expressed as
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The result of these manipulations is an interval for m in terms of s, n, 1.96 (or 
some other z value), and x–. The sample mean, x–, is the only one of these quantities 
that varies from sample to sample. However, once we draw a sample, the interval 
is fi xed as the sample mean’s value, x–, is known. Since the interval will either con-
tain or not contain m , we no longer talk about the probability of the interval contain-
ing m.

Although we do not talk about the probability of an interval containing m , we 
do know that in repeated sampling, intervals of the preceding form will contain 
the parameter, m , 95 percent of the time. Thus, instead of discussing the probability of 
an interval containing m , we say that we are 95 percent confi dent that the interval 
from x n− ( )[ ]1 96. σ  to x n+ ( )[ ]1 96. σ  will contain m. Intervals of this type are 
therefore called confi dence intervals. This reason for the use of the word confi dence is 
the same as that discussed in the preceding distribution-free material. The limits of the 
confi dence interval usually have the form of the sample estimate plus or minus some 
distribution percentile — in this case, the normal distribution — times the standard 
error of the sample estimate.
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Table 7.4 illustrates the concept of confi dence intervals. It shows the results of 
drawing 50 samples of size 60 from a normal distribution with a mean of 94 and a 
standard deviation of 11. These values are close to the mean and standard deviation of 
the systolic blood pressure variable for 5-year-old boys in the United States as reported 
by the NHLBI Task Force on Blood Pressure Control in Children (1987).

In this demonstration, 4 percent (2 out of 50 marked in the table) of the intervals did 
not contain the population mean, and 96 percent did. If we draw many more samples, 
the proportion of the intervals containing the mean will be 95 percent. This is the basis 
for the statement that we are 95 percent confi dent that the confi dence interval, based on 
our single sample, will contain the population mean.

If we use a different value for the standard normal variable, the level of confi dence 
changes accordingly. For example, if we had started with a value of 1.645, z0.95, instead 

Example 7.1

The 95 percent confi dence interval for the mean systolic blood pressure for 200 
patients can be found based on the dig200 data set introduced in Chapter 3. We 
assume that the standard deviation for this patient population is 20  mmHg. As the 
sample mean, x–, based on a sample size of 199 (one missing value) observations, 
was found to be 125.8  mmHg, the 95 percent confi dence interval for the population 
mean ranges from 125 8 1 96 20 199. .− ( )[ ]  to 125 8 1 96 20 199. .− ( )[ ]  — that is, 
from 123.0 to 128.6  mmHg.

Table 7.4 Simulation of 95% confi dence intervals for 50 samples of n = 60 from the normal 
distribution with m = 94 and s = 11 (standard error = 1.42).

Sample Mean Std 95% CI Sample Mean Std 95% CI

 1 94.75 10.25 (91.96, 97.54) 26 94.61 11.49 (91.82, 97.39)
 2 94.85 10.86 (92.06, 97.63) 27 92.79  9.36 (90.00, 95.58)
 3 94.71 10.09 (91.92, 97.50) 28 96.00 12.19 (93.22, 98.79)
 4 94.03 12.27 (91.24, 96.82) 29 95.99 11.36 (93.20, 98.78)
 5 93.77 10.05 (90.98, 96.56) 30 93.98 11.74 (91.19, 96.76)
 6 92.54  9.32 (89.76, 95.33) 31 95.36 13.08 (92.57, 98.15)
 7 93.40 12.07 (90.62, 96.19) 32 91.10  8.69 (88.31, 93.89)*
 8 93.97 11.02 (91.18, 96.75) 33 93.85 12.94 (91.06, 96.63)
 9 96.33  9.26 (93.54, 99.12) 34 96.01  9.63 (93.22, 98.79)
10 93.56 12.01 (90.78, 96.35) 35 95.20  8.94 (92.41, 97.99)
11 94.94 10.81 (92.15, 97.73) 36 95.64  9.41 (92.85, 98.43)
12 94.66 12.08 (91.88, 97.45) 37 94.74 10.31 (91.95, 97.53)
13 94.21 11.02 (91.42, 97.00) 38 93.52 10.30 (90.73, 96.31)
14 94.55 9.98 (91.76, 97.34) 39 92.92 10.27 (90.13, 95.71)
15 93.57 11.50 (90.79, 96.36) 40 95.08 10.07 (92.30, 97.87)
16 95.99 12.01 (93.20, 98.78) 41 93.88 10.53 (91.09, 96.66)
17 93.86 12.53 (91.08, 96.65) 42 95.38  9.98 (92.59, 98.17)
18 92.02 13.58 (89.23, 94.81) 43 94.38 11.65 (91.59, 97.17)
19 95.16 12.03 (92.38, 97.95) 44 91.55 10.63 (88.76, 94.33)
20 94.99 12.00 (92.20, 97.78) 45 95.41 12.79 (92.62, 98.20)
21 94.65 11.18 (91.86, 97.43) 46 92.40 10.57 (89.62, 95.19)
22 92.86 12.52 (90.07, 95.64) 47 96.00 11.45 (93.21, 98.78)
23 93.99 11.76 (91.20, 96.78) 48 95.39 10.56 (92.60, 98.18)
24 91.44 10.75 (88.65, 94.22) 49 97.69 10.89 (94.90, 100.47)*
25 96.07 11.89 (93.28, 98.86) 50 95.01 10.61 (92.22, 97.79)

*Does not contain 94
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180  Interval Estimation

of 1.96, z0.975, the confi dence level would be 90 percent instead of 95 percent. The z0.95 
value is used with the 90 percent level because we want 5 percent of the values to be 
in each tail. The lower and upper limits for the 90 percent confi dence interval for the 
population mean for the data in the fi rst sample of 60 observations are 92.41 [= 94.75 − 
1.645(1.42)] and 97.09 [= 94.75 + 1.645(1.42)], respectively. This interval is narrower 
than the corresponding 95 percent confi dence interval of 91.96 to 97.54. This makes 
sense, since, if we wish to be more confi dent that the interval contains the population 
mean, the interval will have to be wider. The 99 percent confi dence interval uses z0.995, 
which is 2.576, and the corresponding interval is 91.09 [= 94.75 − 2.576(1.42)] to 98.41 
[= 94.75 + 2.576(1.42)].

The fi fty samples shown in Table 7.4 had sample means, based on 60 observations, 
ranging from a low of 91.1 to a high of 97.7. This is the amount of variation in sample 
means expected if the data came from the same normal population with a mean of 94 
and a standard deviation of 11. The Second National Task Force on Blood Pressure 
Control in Children (1987) had study means ranging from 85.6 (based on 181 values) 
to 103.5  mmHg (based on 61 values), far outside the range just shown. These extreme 
values suggest that these data do not come from the same population, and this then calls 
into question the Task Force’s combination of the data from these diverse studies.

The size of the confi dence interval is also affected by the sample size that appears 
in the s / n  term. Since n is in the denominator, increasing n decreases the size of the 
confi dence interval. For example, if we doubled the sample size from 60 to 120 in the 
preceding example, the standard error of the mean changes from 1 42 11 60. =( )  to 
1 004 11 120. =( ). Doubling the sample size reduces the confi dence interval to about 
71 percent ( = 1 2 ) of its former width. Thus, we know more about the location of the 
population mean, since the confi dence interval is shorter as the sample size increases.

The size of the confi dence interval is also a function of the value of s, but to change 
s means that we are considering a different population. However, if we are willing to 
consider homogeneous subgroups of the population, the value of the standard deviation 
for a subgroup should be less than that for the entire population. For example, instead 
of considering the blood pressure of 5-year-old boys, we consider the blood pressure of 
5-year-old boys grouped according to height intervals. The standard deviation of systolic 
blood pressure in the different height subgroups should be much less than the overall 
standard deviation.

Another factor affecting the size of the confi dence interval is whether it is a one-sided 
or a two-sided interval. If we are only concerned about higher blood pressure values, 
we could use an upper one-sided confi dence interval. The lower limit would be zero, or 
−∞ for a variable that had positive and negative values, and the upper limit is

 
x z

n
+ ( )−1 α

σ
.

This is similar to the two-sided upper limit except for the use of z1−a instead of z1−a /2.

Unknown Variance: When the population variance, s2, is unknown, it is reasonable 
to substitute its sample estimator, s2, in the confi dence interval calculation. There is a 
problem in doing this, though. Although x n−( ) ( )μ σ  follows the standard normal 
distribution, x s n−( ) ( )μ  does not. In the fi rst expression, there is only one random 
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variable, x–, whereas the second expression involves the ratio of two random variables, 
x– and s. We need to know the probability distribution for this ratio of random 
variables.

Fortunately, Gosset, who we encountered in Chapter 5, already discovered the dis-
tribution of x s n−( ) ( )μ . The distribution is called Student’s t — crediting Student, 
the pseudonym used by Gosset — or, more simply, the t distribution. For large values 
of n, sample values of s are very close to s, and, hence, the t distribution looks very 
much like the standard normal. However, for small values of n, the sample values of s 
vary considerably, and the t and standard normal distributions have different appear-
ances. Thus, the t distribution has one parameter, the number of independent observa-
tions used in the calculation of s. In Chapter 3, we saw that this value was n − 1, and 
we called this value the degrees of freedom. Hence, the parameter of the t distribution 
is the degrees of freedom associated with the calculation of the standard error. The 
degrees of freedom are shown as a subscript — that is, as tdf. For example, a t with 5 
degrees of freedom is written as t5.

Figure 7.1 shows the distributions of t1 and t5 compared with the standard normal 
distribution over the range of −3.8 to 3.8. As we can see from these plots, the t distribu-
tion with one degree of freedom, the lowest curve, is considerably fl atter — that is, there 
is more variability than for the standard normal distribution, the top curve in the fi gure. 
This is to be expected, since the sample mean divided by the sample standard deviation 
is more variable than the sample mean alone. As the degrees of freedom increase, the 
t distributions become closer and closer to the standard normal in appearance. The ten-
dency for the t to approach the standard normal distribution as the number of degrees 
of freedom increases can also be seen in Table 7.5, which shows selected percentiles for 
several t distributions and the standard normal distribution. A more complete t table is 
found in Appendix Table B5.

Now that we know the distribution of x s n−( ) ( )μ , we can form confi dence 
intervals for the mean even when the population variance is unknown. The form for 
the confi dence interval is similar to that preceding for the mean with known variance 
except that s replaces s and the t distribution is used instead of the standard normal 

Figure 7.1 
Distributions of t1 and t5 
compared with z 
distribution.
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182  Interval Estimation

distribution. Therefore, the lower and upper limits for the (1 − a)  *  100 percent confi -
dence interval for the mean when the variance is unknown are x t s nn− ( ){ }− −1 1 2, α  
and x t s nn+ ( ){ }− −1 1 2, α , respectively.

Let us calculate the 90 percent confi dence interval for the population mean of the 
systolic blood pressure for 5-year-old boys based on the fi rst sample data in Table 7.4 
(row 1). A 90 percent [= (1 − a)  *  100 percent] confi dence interval means that a is 0.10. 
Based on a sample of 60 observations, the sample mean was 94.75 and the sample stan-
dard deviation was 10.25  mmHg. Thus, we need the 95th (= 1 − a /2) percentile of a t 
distribution with 59 degrees of freedom. However, neither Table 7.5 nor Table B5 shows 
the percentiles for a t distribution with 59 degrees of freedom. Based on the small 
changes in the t distribution for larger degrees of freedom, there should be little error 
if we use the 95th percentile for a t60 distribution. Therefore, the lower and upper limits 
are approximately

 
94 75 1 671

10 25

60
94 75 1 671

10 25

60
. .

.
. .

.− ( ) + ( )and

or 92.54 and 96.96  mmHg, respectively.

If we use a computer package (see Program Note 7.1 on the website) to fi nd the 95th 
percentile value for a t59 distribution, we fi nd its value is 1.6711. Hence, there is little 
error introduced in this example by using the percentiles from a t60 instead of a t59 
distribution.

7.3.2   Confi dence Interval for a Proportion

We are frequently exposed to the confi dence interval for a proportion. Most surveys 
about opinions or voting intentions today report the margin of error. This quantity is 
simply one half the width of the 95 percent confi dence interval for the proportion. 
Finding the confi dence interval for a proportion, p, can be based on either the binomial 
or normal distribution. The binomial distribution is generally used for smaller samples 
and it provides an exact interval whereas the normal distribution is used with larger 
samples and provides an approximate interval. Let us examine the exact interval fi rst.

Use of the Binomial Distribution: Suppose we wish to fi nd a confi dence interval 
for the proportion of restaurants that are in violation of local health ordinances. A simple 
random sample of 20 restaurants is selected, and, of those, four are found to have viola-
tions. The sample proportion, p, which is equal to 0.20 (= 4/20), is the point estimate 

Table 7.5 Selected percentiles for several t distributions and the standard 
normal distribution.

 Percentiles

Distribution 0.80 0.90 0.95 0.99

t1 1.376 3.078 6.314 31.821
t5 0.920 1.476 2.015 3.365
t10 0.879 1.372 1.813 2.764
t30 0.854 1.310 1.697 2.457
t60 0.848 1.296 1.671 2.390
t120 0.845 1.289 1.658 2.358
Standard normal 0.842 1.282 1.645 2.326
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of p, the population proportion. How can we use this sample information to create the 
(1 − a)  *  100 percent confi dence interval for the population proportion?

This is a binomial situation, since there are only two outcomes for a restaurant — that 
is, a restaurant either does or does not have a violation. The binomial variable is the 
number of restaurants with a violation and we have observed its value to be 4 in this 
sample.

The limits of the confi dence interval for the proportion are those values that make 
this outcome appear to be unusual. Another way of stating this is that the lower limit 
is the proportion for which the probability of 4 or more restaurants is equal to a /2. 
Correspondingly, the upper limit is the proportion for which the probability of 4 or fewer 
restaurants is equal to a /2. The two charts in Appendix Table B6 can be used to fi nd 
the 95 and 99 percent confi dence intervals.

Example 7.2

Suppose that we want the 95 percent confi dence interval for p = 0.20 and n = 20. We 
use the fi rst chart (Confi dence Level 95 Percent) of Table B6, and, since the sample 
proportion is less than 0.50, we read across the bottom until we fi nd the sample pro-
portion value of 0.20. We then move up along the line corresponding to 0.20 until it 
intersects the fi rst curve for a sample size of 20. Since p is less than 0.50, we read 
the value of the lower limit from the left vertical axis; it is slightly less than 0.06. 
To fi nd the upper limit, we continue up the vertical line corresponding to 0.20 until 
we reach the second curve for a sample size of 20. We read the upper limit from the 
left vertical axis, and its value is slightly less than 0.44. The approximate 95 percent 
confi dence limits are 0.06 and 0.44. Note that this interval is not symmetric about 
the point estimation. If p is greater than 0.5, we locate p across the top and read the 
limits from the right vertical axis.

Another method of fi nding the upper and lower limits of a confi dence interval based 
on a binomial distribution is to fi nd these values by trial and error.

Example 7.3

Suppose that we wish to fi nd the 90 percent confi dence interval for p = 0.20 (x = 4) 
and n = 20. This means that a is 0.10 and a /2 is 0.05. We wish to fi nd the probability 
of being less than or equal to 4 and being greater than or equal to 4 for different 
binomial proportions. For the upper limit, we can try some value above 0.20, say, 
0.35 and calculate Pr (X ≤ x). If Pr (X ≤ x) is larger than a /2, then we will try a larger 
value of p — say, 0.4. We can try this process until Pr (X ≤ x) is close enough to 
a /2. For the lower limit, we try some value of p smaller than 0.20, say 0.1 and cal-
culate Pr (X ≥ x), which is 1 − Pr (X ≤ x − 1). If 1 − Pr (X ≤ x − 1) is smaller than 
a /2, then we try a smaller value of p — say, 0.07. Continue this process until 1 − Pr 
(X ≤ x − 1) is close enough to a /2. Computers can perform this iterative process 
quickly. An SAS program produced the 90 percent confi dence interval (0.0714, 
0.4010). An option of getting a binomial confi dence interval is available in most 
programs (see Program Note 7.2 on the website).
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184  Interval Estimation

Use of the Normal Approximation to the Binomial: Let us now consider the use of 
the normal approximation to the binomial distribution. The sample proportion, p, is the 
binomial variable, x, divided by a constant, the sample size. Since the normal distribu-
tion was shown in Chapter 5 to be a good approximation for the distribution of x when 
the sample size was large enough, it also serves as a good approximation to the distribu-
tion of p. The variance of p is expressed in terms of the population proportion, p, and 
it is p (1 − p)/n. Because p is unknown, we estimate the variance by substituting p for 
p in the formula.

The sample proportion can also be viewed as a mean as was discussed in Chapter 5. 
Therefore, the confi dence interval for a proportion has the same form as that of the 
mean, and the limits of the interval are
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The 1/(2n) is the continuity correction term required because a continuous distribution 
is used to approximate a discrete distribution. For large values of n, the term has little 
effect and many authors drop it from the presentation of the confi dence interval.

Example 7.4

The local health department is concerned about the protection of children against 
diphtheria, pertussis, and tetanus (DPT). To determine if there is a problem in the 
level of DPT immunization, the health department decides to estimate the proportion 
immunized by drawing a simple random sample of 150 children who are 5 years old. 
If the proportion of children in the community who are immunized against DPT is 
clearly less than 75 percent, the health department will mount a campaign to increase 
the immunization level. If the proportion is clearly greater than 75 percent, the health 
department will shift some resources from immunization to prenatal care. The 
department decides to use a 99 percent confi dence interval for the proportion to help 
it reach its decision.

Based on the sample, 86 families claimed that their child was immunized, and 54 
said their child was not immunized. There were 10 children for whom the immuniza-
tion status could not be determined. As was mentioned in Chapter 6, there are several 
approaches to dealing with the unknowns. Since there are only 10 unknowns, we 
shall ignore them in the calculations. Thus, the value of p is 0.614 (= 86/140), much 
lower than the target value of 0.75. If all 10 of the children with unknown status had 
been immunized, then p would have been 0.640, not much different from the value 
of 0.614, and still much less than the target value of 0.75.

Applying the preceding formula, the 99 percent confi dence interval ranges from 
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or from 0.504 to 0.724. Since the upper limit of the 99 percent confi dence interval 
is less than 0.75, the health department decides that it is highly unlikely that the 
proportion of 5-year-old children who are immunized is as large as 0.75. Therefore, 
the health department will mount a campaign to increase the level of DPT immuni-
zation in the community.
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Let us use the normal approximation to fi nd the confi dence for the data in Example 
7.3. The confi dence interval for p based on p = 0.2 and n = 20 using the normal distribu-
tion is (0.0779, 0.3721) compared to (0.0714, 0.4010) based on the binomial distribution 
(Example 7.3). The former interval is symmetric, while the latter interval is not sym-
metric. The use of the normal distribution can give a negative lower limit when used 
with a small p and a small n. For this extreme case the binomial distribution is recom-
mended. The charts in Table B6 suggest that the normal approximation is satisfactory 
for a large n and can be used even for a relatively small n when p is close to 0.5.

7.3.3   Confi dence Intervals for Crude and Adjusted Rates

In Chapter 3, we presented crude, specifi c, and direct and indirect adjusted rates. 
However, we did not present any estimate for the variance or standard deviation of a 
rate, quantities that are necessary for the calculation of the confi dence interval. There-
fore, we begin this material with a section on how to estimate the variance of a rate.

Rates are usually based on the entire population. If this is the case, there is really no 
need to calculate their variances or confi dence intervals for them. However, we often 
view a population rate in some year as a sample in location or time. From this perspec-
tive, there is justifi cation for calculating variances and confi dence intervals. If the value 
of the rate is estimated from a sample, as is often done in epidemiology, then it is 
important to estimate the variance and the corresponding confi dence interval for the 
rate. If the rate is based on the occurrence of a very small number of events — for 
example, deaths — the rate may be unstable and it should not be used in this case. We 
shall say more about this later.

Variances of Crude and Adjusted Rates: The crude rate is calculated as the number 
of events in the population during the year divided by the midyear population. This rate 
is not really a proportion, but it is very similar to a proportion, and we shall treat it as 
if it were a proportion. The variance of a sample proportion, p, is p (1 − p)/n. Thus, the 
variance of a crude rate is approximated by the product of the rate (converted to a 
decimal value) and one minus the rate divided by the population total.

From the data on rates in Chapter 3, we saw that the crude death rate for American 
Indian/Alaskan Native males in 2002 was 439.6 per 100,000. The corresponding estimated 
2002 American Indian/Alaskan Native male population was 1,535,000. Thus the estimated 
standard error, the square root of the variance estimate, for this crude death rate is
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or 5.3 deaths per 100,000 population.

If the issue facing the health department was whether or not to add resources to 
the immunization program, not to shift any resources away from the program, a 
one-sided interval could have been used. The 99 percent upper one-sided interval 
uses z0.99 instead of z0.995 in its calculation and it ranges from 0 to 0.713. This interval 
also does not contain 0.75. Therefore, resources should be added to the immunization 
program.
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The direct age-adjusted rate is a sum of the age-specifi c rates, (sr)i’s, in the popula-
tion under study weighted by the age distribution, wi’s, in the standard population. In 
symbols, this is Σ[wi(sr) i], where wi is the proportion of the standard population in the 
ith age group and (sr)i is the age-specifi c rate in the ith age category. The age-specifi c 
rate is calculated as the number of events in the age category divided by the midyear 
population in that age category. Again, this rate is not a proportion, but it is very similar 
to a proportion. We shall approximate the variance of the age-specifi c rates by treating 
them as if they were proportions. Since the wi’s are from the standard population that 
is usually very large and stable, we shall treat the wi’s as constants as far as the variance 
calculation is concerned. Since the age-specifi c rates are independent of one another, 
the variance of the direct adjusted rate, that is, the variance of this sum, is simply the 
sum of the individual variances
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where ni is the number of persons in the ith age subgroup in the population under 
study.

Considering the U.S. mortality data as a sample in time, we can calculate the approxi-
mate variance of the direct age-adjusted death rate. The data to be used are the 2002 
U.S. male age-specifi c death rates along with the U.S. male population totals and the 
2000 U.S. population proportions by age from Table 3.14. Table 7.6 repeats the relevant 
data and shows the calculations. The entries in the last column are all quite small, less 
than 0.00000001, and therefore, only their sum is shown. The standard error of the direct 
age-adjusted mortality rate is 0.0000117 (= square root of variance). The direct age-
adjusted rate was 1013.7 deaths per 100,000 population, and the standard error of the 
rate is 1.2 deaths per 100,000. The magnitude of the standard error here is not unusual, 
and it shows why the sampling variation of the adjusted rate is often ignored in studies 
involving large population bases.

For the indirect method, the adjusted rate can be viewed as the observed crude rate 
in the population under study multiplied by a ratio. The ratio is the standard population’s 

Table 7.6 Calculation of the approximate variance for the age-adjusted death rate by the direct 
method for U.S. males in 2002.

 U.S. Male Age- U.S. Male U.S. Population
Age Specifi c Rates Population Proportiona

i (sr)i ni wi Σ[wi
2(sr)i(1 - (sr)i)/ni]

Under 1 0.007615 2,064,000 0.013818
1–4 0.000352 7,962,000 0.055317
5–14 0.000200 21,013,000 0.145565
15–24 0.001173 20,821,000 0.138645
25–34 0.001422 20,203,000 0.135573
35–44 0.002575 22,367,000 0.162613
45–54 0.005475 19,676,000 0.134834
55–64 0.011840 12,784,000 0.087242
65–74 0.028553 8,301,000 0.066037
75–84 0.067605 5,081,000 0.044842
85 & over 0.162545 1,390,000 0.015508

Total  141,661,000 1.000000 1.37 × 1010

aU.S. total population proportion in 2000 (the standard)
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crude rate divided by the rate obtained by weighting the standard population’s age-
specifi c rates by the age distribution from the study population. This ratio is viewed as 
a constant in terms of approximating the variance. Hence, the approximation of the 
variance of the indirect adjusted rate is simply the square of the ratio multiplied by the 
variance of the study population’s crude rate.

Using the data from Chapter 3, the standard population’s (the 2000 U.S. population) 
crude rate was 854.0 deaths per 100,000 population. The combination of the standard 
population’s age-specifi c rates with the study population’s (the 2002 American Indian/
Alaskan Native male) age distribution yielded 413.6 deaths per 100,000 population. The 
crude rate for American Indian/Alaskan Native male was 439.6 deaths per 100,000 
population. Thus, the approximate standard error, the square root of the variance, of the 
indirect age-adjusted death rate is
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or 11 per 100,000.

Formation of the Confi dence Interval: To form the confi dence interval for a rate, 
we require knowledge of its sampling distribution. Since we are treating crude and 
specifi c rates as if they are proportions, the confi dence intervals for these rates will be 
based on the normal approximation as just shown for the proportion. Therefore, the 
confi dence interval for the population crude rate (q) is
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where cr is the value of the crude rate based on the observed sample.

For example, the 95 percent confi dence interval for the 2002 American Indian/
Alaskan Native male crude death rate is

 0.00439.6 − 1.96(0.0000534) < q < 0.00439.6 + 1.96(0.0000534)

or from 0.004291 to 0.004501. Thus, the confi dence interval for the crude death rate is 
from 429.1 to 450.1 deaths per 100,000 population.

The confi dence intervals for the rates from the direct and indirect methods of adjust-
ment have the same form as that of the crude rate. For example, the 95 percent confi -
dence interval for the indirect age-adjusted death rate for 2002 American Indian/Alaskan 
Native male is found by taking

 907.8 ± 1.96(11.0) = 907.8 ± 21.6

and thus the limits are from 886.2 to 929.4 deaths per 100,000 population.

Minimum Number of Events Required for a Stable Rate: As we just mentioned, rates 
based on a small number of occurrences of the event of interest may be unstable. To deal 
with this instability, a health agency for a small area often will combine its mortality data 
over several years. By using the estimated coeffi cient of variation, the estimated standard 
error of the estimate divided by the estimate and multiplied by 100 percent, we can deter-
mine when there are too few events for the crude rate to be stable.
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188  Interval Estimation

Recall that in Chapter 3 we said that if the coeffi cient of variation was large, the data 
had too much variability for the measure of central tendency to be very informative. 
Values of the coeffi cient of variation greater than 30 percent — others might use slightly 
larger or smaller values — are often considered to be large. We shall use this idea with 
the crude rate to determine how many events are required so that the rate is stable.

For example, the coeffi cient of variation for the 1986 crude mortality rate of Harris 
County is 0.904 percent (= [0.0000479/0.005296]  *  100). This rate, less than 1 percent, 
is very reliable from the coeffi cient of variation perspective. It turns out that the coeffi -
cient of variation of the crude rate can be approximated by (1 d )  *  100 percent, where 
d is the number of events. For example, the total number of deaths for Harris County 
in 1986 was 12,152 and (1/12152)  *  100 is 0.907 percent, essentially the same result as 
above.

Thus, we can use the approximation (1 d )  *  100 percent for the coeffi cient of 
variation. Setting the coeffi cient of variation to 20, 30, and 40 percent, yields 25, 12, 
and 7 events, respectively. If the crude rate is based on fewer than seven events, it cer-
tainly should not be reported. If we require that the coeffi cient of variation be less than 
20 percent, there must be at least 25 occurrences of the event for the crude rate to be 
reported.

7.4   Confi dence Interval for the Difference of 
Two Means and Proportions

We often wish to compare the mean or proportion from one population to that of another 
population. The confi dence interval for the difference of two means or proportions 
facilitates the comparison. As will be seen the following sections, the method of con-
structing the confi dence interval is different, depending on whether the two means or 
proportions are independent or not and depending on what assumptions are made.

7.4.1   Difference of Two Independent Means

Examples of comparing two independent means include the following. Is the mean 
change in blood pressure for men with mild to moderate hypertension the same for men 
taking different doses of an angiotensin-converting enzyme inhibitor? Is the mean 
length of stay in a psychiatric hospital equal for patients with the same diagnosis but 
under the care of two different psychiatrists? Given the following, there is an interest 
in the mean change in air pollution — specifi cally, in carbon monoxide — from 1991 
to 1992 for neighboring states A and B. There was no change in gasoline formulation 
in State A, whereas State B required on January 1, 1992, that gasoline must consist of 
10 percent ethanol during the November to March period.

One reason for interest in the confi dence interval for the difference of two means is 
that it can be used to address the question of the equality of the two means. If there is 
no difference in the two population means, the confi dence interval for their difference 
is likely to include zero.

Known Variances: The confi dence interval for the difference of two means has the 
same form as that for a single mean; that is, it is the difference of the sample means 

Ch007-P369492.indd   188 11/4/2006   11:21:39 AM



plus or minus some distribution percentile multiplied by the standard error of the dif-
ference of the sample means. Let’s convert these words to symbols. Suppose that we 
draw samples of sizes n1 and n2 from two independent populations. All the observations 
are assumed to be independent of one another — that is, the value of one observation 
does not affect the value of any other observation. The unknown population means are 
m1 and m2, the sample means are x–1 and x–2, and the known population variances are s1

2 
and s2

2, respectively. The variances of the sample means are s1
2/n1 and s2

2/n2, respec-
tively. Since the means are from two independent populations, the standard error of the 
difference of the sample means is the square root of the sum of the variances of the two 
sample means — that is,

 

σ σ1
2

1

2
2

2n n
+ .

The central limit theorem implies that the difference of the sample means will 
approximately follow the normal distribution for reasonable sample sizes. Thus, we 
have
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Therefore, the (1 − a)  *  100 percent confi dence interval for the difference of population 
means, m1 − m2, is
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Example 7.5

Suppose we wish to construct a 95 percent confi dence interval for the effect of dif-
ferent doses of Ramipril, an angiotensin-converting enzyme converting inhibitor, 
used in treating high blood pressure. A study reported changes in diastolic blood 
pressure using the values at the end of a four-week run-in period as the baseline 
and measured blood pressure after two, four, and six weeks of treatment (Walter, 
Forthofer, and Witte 1987). We shall form a confi dence interval for the difference 
in mean decreases from baseline to two weeks after treatment was begun between 
doses of 1.25  mg and 5  mg of Ramipril. The sample mean decreases are 10.6 (x–1) and 
14.9  mmHg (x–2) for the 1.25 and 5  mg doses, respectively, and n1 and n2 are both 
equal to 53. Both s1 and s2 are assumed to be 9  mmHg. The 95 percent confi dence 
interval for m1 − m2 is calculated as follows:
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10 6 14 9 1 96

81

53

81

53
. . . . . .−( ) − + −( ) + + +⎛
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⎞
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,

or ranging from −7.98 to −0.62. The value of 0 is not contained in this interval. Since 
the difference in mean decreases is negative, it appears that the 5  mg dose of 
Ramipril is associated with a greater decrease in diastolic blood pressure during the 
fi rst two weeks of treatment when considering only these two doses.
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190  Interval Estimation

Unknown but Equal Population Variances: If the variances are unknown but 
assumed to be equal, data from both samples can be combined to form an estimate of 
the common population variance. Use of the sample estimator of the variance calls for 
the use of the t instead of the normal distribution in the formation of the confi dence 
interval. The pooled estimator of the common variance, s2

p, is defi ned as
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and this can be rewritten as
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The pooled estimator is a weighted average of the two sample variances, weighted by 
the respective degrees of freedom associated with the individual sample variances and 
divided by sum of the degrees of freedom associated with each of the two sample 
variances.

Now that we have an estimator of s2, we can use it in estimating the standard error 
of the difference of the sample means, x–1 and x–2. Since we are assuming that the popula-
tion variances for the two groups are the same, the standard error of the difference of 
the sample means is
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and its estimator is
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The corresponding t statistic is
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and the (1 − a)  *  100 percent confi dence interval for (m1 − m2) is

 
x x t s n n x x t s n nn p n p1 2 2 1 2 1 2 1 2 2 1 2 1 21 1 1 1−( ) − + −( ) + +( )− − − −, ,,α α

where n is the sum of n1 and n2.

Example 7.6

Suppose that we wish to calculate the 95 percent confi dence interval for the differ-
ence in the proportion of caloric intake that comes from fat for fi fth- and sixth-grade 
boys compared to seventh- and eighth-grade boys in suburban Houston. The sample 
data are shown in Table 7.7. The proportion of caloric intake that comes from fat is 
found by converting the grams of fat to calories by multiplying by nine (9 calories 
result from 1 gram of fat) and then dividing by the number of calories consumed.
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The sample mean for the 14 fi fth- and sixth-grade boys is 0.329 compared to 0.353 
for the 19 seventh- and eighth-grade boys. These values of percent of intake from 
fat are slightly above the recommended value of 30 percent (Life Sciences Research 
Offi ce 1989). The corresponding standard deviations are 0.0895 and 0.0974, which 
support the assumption of equal variances.

The estimate of the pooled standard deviation is therefore

sp = ( ) + ( )
+ −

=13 0 0895 18 0 0974

14 19 2
0 094

2 2. .
. .

The estimate of the standard error of the difference of the sample means is

0 094 1 14 1 19 0 033. . .+ =

To fi nd the confi dence interval, we require t31, 0.975. This value is not shown in Table 
B5, but, based on the values for 29 and 30 degrees of freedom, an approximate value 
for it is 2.04. Therefore, the lower and upper limits are

[(0.329 − 0.353) − 2.04 (0.033)] and [(0.329 − 0.353) + 2.04 (0.033)]

or −0.092 and 0.044. Since zero is contained in the 95 percent confi dence interval, 
there does not appear to be a difference in the mean proportions of calories that come 
from fat for fi fth- and sixth-grade boys compared to seventh- and eighth-grade boys 
in suburban Houston.

Table 7.7 Total fat,a calories, and the proportion of calories from total fat for the 33 boys.

 Grades 7 and 8 Grades 5 and 6

Total Fat Calories Prop. from Fat Total Fat Calories Prop. from Fat

   567 1,823 0.311 1,197 3,277 0.365
   558 2,007 0.278 891 2,039 0.437
   297 1,053 0.282 495 2,000 0.248
1,818 4,322 0.421 756 1,781 0.424
   747 1,753 0.426 1,107 2,748 0.403
   927 2,685 0.345 792 2,348 0.337
   657 2,340 0.281 819 2,773 0.295
2,043 3,532 0.578 738 2,310 0.319
1,089 2,842 0.383 738 2,594 0.285
   621 2,074 0.299 882 1,898 0.465
   225 1,505 0.150 612 2,400 0.255
   783 2,330 0.336 252 2,011 0.125
1,035 2,436 0.425 702 1,645 0.427
1,089 3,076 0.354 387 1,723 0.225
   621 1,843 0.337
   666 2,301 0.289
1,116 2,546 0.438
   531 1,292 0.411
1,089 3,049 0.357
aTotal fat has been converted to calories by multiplying the number of grams by 9.

Unknown and Unequal Population Variances: If the population variances are dif-
ferent, this poses a problem. There is a procedure for obtaining an exact confi dence 
interval for the difference in the means when the population variances are unequal, but 
it is much more complex than the other methods in this book (Kendall and Stuart 1967). 
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192  Interval Estimation

Because of this complexity, most researchers use an approximate approach to the 
problem. The following shows one of the approximate approaches.

Since the population variances are unknown, we again use a t-like statistic. This 
statistic is
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.

The t distribution with the degrees of freedom shown next can be used to obtain the 
percentiles of the t’ statistic. The degrees of freedom value, df, is
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This value for the degrees of freedom was suggested by Satterthwaite (1946). It is 
unlikely to be an integer, and it should be rounded to the nearest integer.

The approximate (1 − a)  * 100 percent confi dence interval for the difference of two 
independent means when the population variances are unknown and unequal is

 (x– − x–2) − tdf,1−a /2sx–1−x–2
 < (m1 − m2) < (x–1 − x–2) + tdf,1−a /2sx

–
1−x

–
2

where the estimate of the standard error of the difference of the two sample means is
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Example 7.7

In Exercise 3.8, we presented survival times from Exercise Table 3.3 in Lee (1980) 
on 71 patients who had a diagnosis of either acute myeloblastic leukemia (AML) or 
acute lymphoblastic leukemia (ALL). In one part of the exercise, we asked for addi-
tional variables that should be considered before comparing the survival times of 
these two diagnostic groups of patients. One such variable is age. Let us examine 
these two groups to determine if there appears to be an age difference. If there is a 
difference, it must be taken into account in the interpretation of the data. To examine 
if there is a difference, we fi nd the 99 percent confi dence interval for the difference 
of the mean ages of the AML and ALL patients. Since we have no knowledge about 
the variation in the ages, we shall assume that the variances will be different. Table 
7.8 shows the ages and survival times for these 71 patients.

The sample mean age for the AML patients, x–1, is 49.86 and s1 is 16.51 based on 
the sample size, n1, of 51 patients. The sample mean, x–2, for the 20 ALL patients is 
36.65 years and s2 is 17.85. This is the information needed to calculate the confi dence 
interval. Let’s fi rst calculate the sample estimate of the standard error of the differ-
ence of the means:

 
sx x1 2

16 51

51

17 85

20
4 61

2 2

− = + =. .
. .

We next calculate the degrees of freedom, df, to be used and we fi nd it from
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= 32 501. .

This value is rounded to 33. The 99.5 percentile of the t distribution with 33 degrees 
of freedom is about midway between the value of 2.750 (30 degrees of freedom) and 
2.724 (35 degrees of freedom) in Appendix Table B5. We shall interpolate and use 
a value of 2.7344 for the 99.5 percentile of the t distribution with 33 degrees of 
freedom. Therefore, the approximate 99 percent confi dence interval for the differ-
ence of the mean ages is

(49.86 − 36.65) − 2.7344 (4.61) < m1 − m2 < (49.86 − 36.65) + 2.7344 (4.61)

or

0.60 < m1 − m2 < 25.82.

Since zero is not contained in this confi dence interval, there is an indication of a 
difference in the mean ages. If the survival patterns differ between patients with 
these two diagnoses, it may be due to a difference in the age of the patients.

How large would the confi dence interval have been if we had assumed that the 
unknown population variances were equal? Using the approach in the previous 
section, the pooled estimate of the standard deviation, sp, is

 

51 1 61 51 20 1 17 85

51 20 2
16 89

2 2−( ) + −( )
+ −

=. .
. .

This leads to an estimate of the standard error of the difference of the two means 
of

 
16 89

1

51

1

20
4 456. . .+ =

Thus the confi dence interval, using an approximation of 2.65 to the 99.5 percentile 
of the t distribution with 69 degrees of freedom, is

Table 7.8 Ages and survival times of the AML and ALL patients (age and survival times are in the 
same order).

AML Patients
 Age 20 25 26 26 27 27 28 28 31 33 33 33 34
 36 37 40 40 43 45 45 45 45 47 48 50 50
 51 52 53 53 56 57 59 59 60 60 61 61 61
 62 63 65 71 71 73 73 74 74 75 77 80

 Survival Time 18 31 31 31 36 01 09 39 20 04 45 36 12
  in Months 08 01 15 24 02 33 29 07 00 01 02 12 09
 01 01 09 05 27 01 13 01 05 01 03 04 01
 18 01 02 01 08 03 04 14 03 13 13 01

ALL Patients
 Age 18 19 21 22 26 27 28 28 28 28 34 36 37
 47 55 56 59 62 83 19

 Survival Time 16 25 01 22 12 12 74 01 16 09 21 09 64
  in Months 35 01 07 03 01 01 22
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In practice, we usually know little about the magnitude of the population variances. 
This makes it diffi cult to decide which approach, equal or unequal variances, should be 
used. We recommend that the unequal variances approach be used in those situations 
when we have no knowledge about the variances and no reason to believe that they are 
equal. Fortunately, as we just saw, often there is little difference in the results of the 
two approaches. Some textbooks and computer packages recommend that we fi rst test 
to see if the two population variances are equal and then decide which procedure to use. 
Several studies have been conducted recently and conclude that this should not be done 
(Gans 1991; Markowski and Markowski 1990; Moser and Stevens 1992).

7.4.2   Difference of Two Dependent Means

Dependent means occur in a variety of situations. One situation of interest occurs when 
there is a preintervention measurement of some intervention and a postintervention 
measurement. Another dependent mean situation occurs when there is a matching or 
pairing of subjects with similar characteristics. One subject in the pair receives one type 
of treatment and the other member in the pair receives another type of treatment. Mea-
surements on the variable of interest are made on both members of the pair. In both of 
these situations, there is some relation between the values of the observations in a pair. 
For example, the preintervention measurement for a subject is likely to be correlated with 
the postintervention measurement on the same subject. If there is a nonzero correlation, 
this violates the assumption of independence of the observations. To deal with this rela-
tion (dependency), we form a new variable that is the difference of the observations in 
the pair. We then analyze the new variable, the difference of the paired observations.

Consider the blood pressure example just presented. Suppose that we focus on the 
1.25  mg dose of Ramipril. We have a value of the subject’s blood pressure at the end of 
a four-week run-in period and the corresponding value after two weeks of treatment for 
53 subjects. There are 106 measurements, but only 53 pairs of observations and only 53 
differences for analysis. The mean decrease in diastolic blood pressure after two weeks 
of treatment for the 53 subjects is 10.6  mmHg, and the sample standard deviation of the 
difference is 8.5  mmHg. The confi dence interval for this difference has the form of the 
confi dence interval for the mean from a single population. If the population variance is 
known, we use the normal distribution; otherwise we use the t distribution. We assumed 
that the population standard deviation was 9  mmHg previously, and we shall use that 
value here. Thus, the confi dence interval will use the normal distribution — that is,

(49.86 − 36.65) − 2.65 (4.456) < m1 − m2 < (49.86 − 36.65) + 2.65 (4.456)

or

1.20 < m1 − m2 < 25.02.

This interval is slightly narrower than the preceding confi dence interval found. 
However, both intervals lead to the same conclusion about the ages in the two diag-
nosis groups. For the use of a computer for this calculation, see Program Note 7.3 
on the website.
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where the subscript d denotes difference.

Let us calculate the 90 percent confi dence interval for the mean decrease in diastolic 
blood pressure. Table B4 shows that the 95th percentile of the standard normal is 1.645. 
Thus, the confi dence interval is
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which gives an interval ranging from 8.57 to 12.63  mmHg. Since zero is not contained 
in the interval, it appears that there is a decrease from the end of the run-in period to 
the end of the fi rst two weeks of treatment.

If we had ignored the relation between the pre- and postintervention values and used 
the approach for independent means, how would that have changed things? The mean 
difference between the pre- and postvalues does not change, but the standard error of 
the mean difference does change. We shall assume that the population variances are 
known and that s1, for the preintervention value, is 7  mmHg and s2 is 8  mmHg. The 
standard error of the differences, wrongly ignoring the correlation between the pre- and 
postmeasures, is then

 

7

53

8

53
1 46

2 2

+ = . .

This is larger than the value of 9/√53
—

 (= 1.236) just found when taking the correlation 
into account. This larger value for the standard error of the difference (1.46 versus 1.236) 
makes the confi dence interval larger than it would be had the correct method been 
used.

This experiment was to examine the dose-response relation of Ramipril. It consisted 
of a comparison of the changes in the pre- and postintervention blood pressure 
values for three different doses of Ramipril. If the purpose had been different — 
for example, to determine whether or not the 1.25  mg dose of Ramipril had an 
effect — this type of design may not have been the most appropriate. One problem with 
this type of design — measurement, treatment, measurement — when used to establish 
the existence of an effect is that we have to assume that nothing else relevant to the 
subjects’ blood pressure values occurred during the treatment period. If this assumption 
is reasonable, then we can attribute the decrease to the treatment. However, if this 
assumption is questionable, then it is problematic to attribute the change to the treat-
ment. In this case, the patients received a placebo — here, a capsule that looked and 
tasted liked the medication to be taken later — during the four-week run-in period. 
There was little evidence of a placebo effect, a change that occurs because the subject 
believes that something has been done. A placebo effect, when it occurs, is real and 
may refl ect the power of the mind to affect disease conditions. This lack of a placebo 
effect here lends credibility to attributing the decrease to the medication, but it is no 
guarantee.
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7.4.3   Difference of Two Independent Proportions

In this section, we want to fi nd the (1 − a)  * 100 percent confi dence interval for the 
difference of two independent proportions — that is, p1 minus p2. We shall assume that 
the sample sizes are large enough so that it is appropriate to use the normal distribution 
as an approximation to the distribution of p1 minus p2. In this case, the confi dence 
interval for the difference of the two proportions is approximate. Its form is very similar 
to that for the difference of two independent means when the variances are not equal.

The variance of the difference of the two independent proportions is
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Since the population proportions are unknown, we shall substitute the sample propor-
tions, p1 and p2, for them in the variance formula. The (1 − a)  *  100 percent confi dence 
interval for p1 − p2 then is
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Because we are considering the difference of two proportions, the continuity correction 
terms cancel out in taking the difference.

Example 7.8

Holick et al. (1992) conducted a study of 13 milk processors in fi ve eastern states. 
They found that only 12 of 42 randomly selected samples of milk that they collected 
contained 80 to 120 percent of the amount of vitamin D stated on the label. Suppose 
that 10 milk processors in the Southwest are also studied and that 21 of 50 randomly 
selected samples of milk contained 80 to 120 percent of the amount of vitamin D 
stated on the label. Construct a 99 percent confi dence interval for the difference of 
proportions of milk that contain 80 to 120 percent of the amount of vitamin D stated 
on the label between these eastern and southwestern producers.

Since the sample sizes and the proportions are relatively large, the normal approxi-
mation can be used. The estimate of the standard error of the sample difference is
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The value of z0.995 is found from Table B4 to be 2.576. Therefore, the 99 percent 
confi dence interval is

(0.286 − 0.420) − 2.576 (0.0987) < p1 − p2 < (0.286 − 0.420) 
 + 2.576 (0.0987)

which is (−0.388, 0.120).
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7.4.4   Difference of Two Dependent Proportions

Suppose that a sample of n subjects has been selected to examine the relationship 
between the presences of a particular attribute at two time points for the same individu-
als (paired observations). The situation could also be used to examine the relationship 
between two different attributes for the same individuals. The sample data for these 
situations can be arranged as follows:

Since zero is contained in the confi dence interval, there is little indication of a dif-
ference in the proportion of milk samples with vitamin D content within the 80 to 
120 percent range of the amount stated on the label between these eastern and south-
western milk producers.

 Attribute at Time

1 2 Number of Subjects

Present Present a
Present Absent b
Absent Present c
Absent Absent d

 Total n

Then the estimated proportion of subjects with the attribute at time 1 is p1 = (a + b)/n, 
and the estimated proportion with the attribute at time 2 is p2 = (a + c)/n. The difference 
between the two estimated proportions is

 
p p p

a b

n

a c

n

b c

n
d = − = + − + = −

1 2 .

Since the two population probabilities are dependent, we cannot use the same 
approach for estimating the standard error of the difference that we used in the previous 
section. Instead of showing the steps in the derivation of the formula, we simply present 
the formula for the estimated standard error (Fleiss 1981).

 
Estimated SE p

n
b c

b c

n
d( ) = +( ) − −( )1 2

.

The confi dence interval for the difference of two dependent proportions, pd (= p1 − p2), 
is then given by

 pd − z1−a /2SE(pd) < pd < pd + z1−a /2SE(pd).

Example 7.9

Suppose that 100 students took both biostatistics and epidemiology tests, and 18 
failed in biostatistics (p1 = 0.18) and 10 failed in epidemiology (p2 = 0.10). There is 
an 8 percentage point difference (pd = 0.08). The confi dence interval for the differ-
ence of these two failure rates cannot be constructed using the method in the previous 
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198  Interval Estimation

subsection because the two rates are dependent. We need additional information to 
assess the dependency. Nine students failed both tests (p12 = 0.09), and this refl ects 
the dependency. The dependency between p1 and p2 can be seen more clearly when 
the data are presented in a 2 by 2 table.

 Epidemiology

Biostatistics Failed Passed Total

Failed 9 (a)  9 (b)  18
Passed 1 (c) 81 (d)  82

Total 10 90 100 (n)

The marginal totals refl ect the two failure rates. The numbers in the diagonal cells 
(a, d) are concordant pairs of test scores (those who passed or failed both tests), and 
those in the off-diagonal cells (b, c) are discordant pairs (those who passed one test 
but failed the other). Important information for comparing the two dependent failure 
rates is contained in discordant pairs, as the estimated difference of the two propor-
tions and its estimated standard error are dependent on b and c.

Using the standard error equation, we have

 

1

100
9 1

9 1

100
0 0306

2

+( ) − −( )
= . .

Then the 95 percent confi dence interval for the difference of these two dependent 
proportions is

0.08 − 1.96 (0.0306) < pd < 0.08 + 1.96 (0.0306)

or (0.0200, 0.1400). This interval does not include 0, suggesting that the failure rates 
of these two tests are signifi cantly different. However, this method is not recom-
mended for small frequencies and further discussion will follow in conjunction with 
hypothesis testing in the next chapter.

7.5   Confi dence Interval and Sample Size
One important point about the confi dence interval for the population mean is that its 
width can be calculated before the sample is selected. The half-width of the confi dence 
interval is

 
z

n
1 2−α

σ
.

When s and n are known, the width can be calculated. If the interval is viewed as being 
too wide to be informative, we can change one of the values used (z, n, or s) in calcu-
lating the width to see if we can reduce it to an acceptable value. The two most common 
ways of reducing its width are by decreasing our level of confi dence (reducing the z 
value) or by increasing the sample size (n); however, there are limits for both of these 
choices. Most researchers prefer to use at least the 95 percent level for the confi dence 
interval although the use of the 90 percent level is not uncommon. To drop below the 
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90 percent level is usually unacceptable. Researchers may be able to increase the sample 
size somewhat, but the increase requires additional resources that are often limited.

Example 7.10

Suppose that we wish to estimate the mean systolic blood pressure of girls who are 
120 to 130  cm (approximately 4 feet to 4 feet 3 inches) tall. We assume that the 
standard deviation of the systolic blood pressure variable for girls in this height group 
is 7  mmHg. Given this information, how large a sample is required so that the half-
width of the 95 percent confi dence interval is no more than 3  mmHg wide?

The half-width of the confi dence interval can be equated to the specifi ed half-width 
— that is

 
1 96

7
3. .

n

⎛
⎝⎜

⎞
⎠⎟

=

This equation can be solved for n, multiplying both sides by n  and squaring both 
sides, which gives

 
n = ( )⎛

⎝⎜
⎞
⎠⎟

=
1 96 7

3
20 9

2.
. .

Since n must be an integer, the next highest integer value, 21, is taken to be the value 
of n.

The formula for n, given a specifi ed half-width, d, for the (1 − a)  * 100 percent con-
fi dence interval is

 
n

z

d
= ⎛

⎝⎜
⎞
⎠⎟

−1 2
2

α σ
.

So far, we have been assuming that s is known; however, in practice, we seldom 
know the population standard deviation. Sometimes the literature or a pilot study pro-
vides an estimate of its value that we may use for s.

For the case of proportion, the sample size can be calculated by the following 
formula:

 
n

z

d
=

−( )⎛
⎝⎜

⎞
⎠⎟

−1 2

2
1α π π

.

In this formula p is the population proportion and p (1 − p)/n is the variance of binomial 
distribution as shown in Chapter 4. The population proportion is seldom known when 
calculating the sample size. Again, the literature or a pilot study may provide an esti-
mate. In cases when we have no information for p, we can use p = 0.5. This practice is 
based on the fact that p (1 − p) is the maximum when p = 0.5 and the calculated sample 
size will be suffi cient for any value of p.

The confi dence interval for the difference between two independent means, m1 and 
m2, can be used to determine the sample size required when there are two equal-size 
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200  Interval Estimation

experimental groups. We assume that the same known population variance is s2 and 
two equal random samples of size n are to be taken. Then the half-width of the confi -
dence interval for the difference of two means simplifi es to

 
z

n n
1 2

2 2

− +α
σ σ

.

As before, let d be the half-width of the desired confi dence interval. Equating the pre-
ceding quantity to d and solving for n we have

 
n

z

d
= ⎛

⎝
⎞
⎠

−2 1 2
2

α σ
.

For the case of the difference of two independent proportions, the required sample 
size can be calculated by

 
n

z

d
=

−( ) + −( )⎛
⎝⎜

⎞
⎠⎟

−2
1 11 2 1 1 2 2

2

α π π π π
.

Example 7.11

A researcher wants to be 99 percent confi dent (z = 2.567) that the difference in the 
mean systolic blood pressure of boys and girls be estimated within plus and minus 
2  mmHg (d = 2). How large a sample size does the researcher need in each group? 
We will assume that the sample size is large enough that the normal distribution 
approximation can be used. We also assumed that the standard deviation of the sys-
tolic blood pressure for boys and girls are the same, and it is 8  mmHg. The required 
sample size is

 
n = ( )⎛

⎝⎜
⎞
⎠⎟

=2
2 567 8

2
210 9

2.
. .

The required sample size is 211 in each group.

In the planning of a statistical study, the determination of sample size is not as simple 
as the preceding example may suggest. If you want a high level of confi dence and a 
small interval, a very large sample size is required. The diffi culty lies in deciding what 
level of confi dence to aim for within the limit imposed by available resources. The bal-
ancing of the level of confi dence against availability of resources may require an itera-
tive process until a solution is found that satisfi es both requirements.

7.6   Confi dence Intervals for Other Measures
We next consider confi dence intervals for the variance and the Pearson correlation coef-
fi cient. Interval estimation for other measures such as the odds ratio and regression 
coeffi cient will be discussed in subsequent chapters.
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7.6.1   Confi dence Interval for the Variance

Besides being useful in describing the data, the variance is also frequently used in 
quality control situations. It is one way of stating how reliable the process under study 
is. For example, in Chapter 2 we presented data on the measurement of blood lead levels 
by different laboratories. We saw from that example that great variability in the mea-
surements made by laboratories exists, and the variance is one way to characterize that 
variability. Variability within laboratories can be due to different technicians, failure to 
calibrate the equipment, and so forth. It is critically important that measurements of the 
same sample within a laboratory have variability less than or equal to a prespecifi ed 
small amount. Thus, based on the sample variance for a laboratory for measuring blood 
lead, we wish to determine whether or not the laboratory’s variance is in compliance 
with the standards. The confi dence interval for the population variance provides one 
method of doing this.

To construct the confi dence interval for the population variance, we need to know 
the sampling distribution of its estimator, the sample variance, s2. The sampling distri-
bution of s2 can be examined by (1) taking a repeated random sample from a normal 
distribution, (2) calculating a sample variance from each sample, and (3) plotting a his-
togram of sample variances. When we take a repeated random sample of size 3, the 
distribution of sample variances looks like the black line in Figure 7.2. The distribution 
for df = 2 is very asymmetric with a long tail to the right, suggesting that there is tre-
mendous variability in the sample variances. This large variation is expected as each 
sample variance was based on only three observations. When we increase the sample 
size to 6 (df = 5), the distribution of sample variances is not so asymmetric and the tail 
to the right is much shorter than in the fi rst distribution. When we increase the sample 
size to 11 (df = 10), the distribution of sample variances is almost symmetric. We can 
see that the sampling distributions for the three samples sizes are very different; that 
is, they depend on the sample size.

It appears that the distribution of the sample variance does not match any of the 
probability distributions we have encountered so far. Fortunately, when the data come 
from a normal distribution, the distribution of the sample variance is known. The sample 
variance (s2), multiplied by (n − 1)/s 2, follows a chi-square (c2) distribution. Two 

df = 2

df = 5

df = 10

Figure 7.2 Chi-square 
distributions with df = 
2, df = 5, and df = 10.
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202  Interval Estimation

eminent 19th-century French mathematicians, Laplace and Bienaymé, played important 
roles in the development of the chi-square distribution. Karl Pearson, an important 
British statistician previously encountered in connection with the correlation coeffi cient, 
popularized the use of the chi-square distribution in the early 20th century. As we just 
saw, the distribution of the sample variance depends of the sample size, actually on the 
number of independent observations (degrees of freedom) used to calculate s2. There-
fore, Appendix Table B7 shows percentiles of the chi-square distribution for different 
values of the degrees of freedom parameter.

To create a confi dence interval for the population variance, we begin with the prob-
ability statement

 
Pr ., ,χ

σ
χ αα αn n

n s
− − −< −( )

<{ } = −1 2
2

2

2 1 1 2
21

1

This statement indicates that the confi dence interval will be symmetric in the sense that 
the probability of being less than the lower limit is the same as that of being greater 
than the upper limit. However, the confi dence limit will not be symmetric about s2. This 
probability statement is in terms of s2, however, and we want a statement about s2. To 
convert it to a statement about s2, we fi rst divide all three terms in the braces by (n − 1) 
s2. This yields
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1

The interval is now about 1/s2, not s2. Therefore, we next take the reciprocal of all three 
terms, which changes the direction of the inequalities. For example, we know that 3 is 
greater than 2, but the reciprocal of 3, which is 1/3 or 0.333, is less than the reciprocal 
of 2, which is 1/2 or 0.500. Thus, we have
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and reversing the directions of the inequalities to have the smallest term on the left, 
yields
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It is also possible to create one-sided confi dence intervals for the population variance. 
For example, the lower one-sided confi dence interval for the population variance is

 

n s

n
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< < ∞
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1 2
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2

2
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σ

α,

.

Example 7.12

Let’s apply this formula to an example. From 1988 to 1991, eight persons in Massa-
chusetts were identifi ed as having vitamin D intoxication due to receiving large doses 
of vitamin D3 in fortifi ed milk (Jacobus, Holick, and Shao 1992). The problem was 
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traced to a local dairy that had tremendous variability in the amount of vitamin D 
added to individual bottles of milk. Homogenized whole milk showed the greatest 
variability based on measurements made in April and June 1991, with a low value 
of less than 40  IUs and a high of 232,565  IUs of vitamin D3 per quart. These values 
are contrasted with the requirement for at least 400  IUs (10  mg) to no more than 
500  IUs of vitamin D per quart of milk in Massachusetts.

The Food and Drug Administration (FDA) found poor compliance with the 
requirement for 400  IUs of vitamin D per quart of vitamin D fortifi ed milk in a 1988 
survey (Holick et al. 1992). Based on this poor compliance, the FDA urged that the 
problem be corrected; otherwise it would institute a regulatory program. Suppose 
that compliance is defi ned in terms of the mean and standard error of the mean 
vitamin D concentration in milk. The mean concentration should be 400  IUs with a 
variance of less than 1600  IUs. To determine if a milk producer is in compliance, a 
simple random sample of milk cartons from the producer is selected and the amount 
of vitamin D in the milk is ascertained. It is decided that if the 90 percent lower 
one-sided confi dence interval for the variance contains 1600  IUs, the process used 
by the producer to add vitamin D is said to be within the acceptable limits for vari-
ability. This is an approach for determining compliance that greatly favors the 
producer.

A random sample of 30 cartons is selected and the sample variance for the vitamin 
D in the milk is found to be 1700  IUs. The 90 percent confi dence interval uses c2

29,0.90, 
where the fi rst subscript is the degrees of freedom parameter and the second subscript 
is the percentile value. The value from Table B7 is 39.09. The lower limit is found 
from [29(1700)]/39.09, which gives the value of 1261.3. Since the 90 percent confi -
dence interval does contain 1600  IUs, the producer is said to be in compliance with 
the variability requirement. To fi nd that a producer is not in compliance requires a 
sample variance to be at least 2156.5.

A key assumption in calculating the confi dence interval for the population variance 
is that the data come from a normal distribution. If the data are from a very nonnormal 
distribution, the use of the preceding formula for calculating the confi dence interval can 
be very misleading.

To fi nd the confi dence interval for the population standard deviation, we take the 
square root of the variance’s confi dence interval limits. Thus, the lower limit of the 
confi dence interval for s in the above example is 35.5  IUs.

7.6.2   Confi dence Interval for the Pearson Correlation Coeffi cient

In Chapter 3, we presented r, the Pearson correlation coeffi cient, which is used in 
assessing the strength of the linear relation between two jointly normally distributed 
variables. We presented a formula for fi nding r, the sample Pearson correlation coeffi -
cient. We also found the correlation between systolic and diastolic blood pressures, 
based on the 12 adults in Example 3.18, to be 0.894, suggestive of a strong positive 
relation. Although this point estimate of r is informative, more information is provided 
by the interval estimate. For example, if the sampling variation of r were so large that 
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the 95 percent confi dence interval for r contains zero, we would not be impressed by 
the strength of the relation between total fat and protein.

It turns out that the sampling distribution of r is not easily characterized. However, 
the father of modern statistics, Ronald Fisher, showed that a transformation of r approxi-
mately follows a normal distribution. This transformation is

 z′ = 0.5[loge(1 + r) − loge(1 − r)]

and it provides the basis for the confi dence interval for r. The mean of z′ is [loge (1 + 
r) − loge (1 − r)] and its standard deviation, sz′, is 1 3n −( ) .  Note that for convenience, 
loge is often written as ln, and we shall do that following. Thus, we can employ the 
procedures we have just used for fi nding the confi dence interval for the transformed 
value of r — that is,

 z′ − z1−a /2sz′ < 0.5[ln(1 + r) − ln(1 − r)] < z′ + z1−a /2sz.

There is one simplifi cation we can make that allows us to have to take only one 
natural logarithm in the calculation instead of fi nding two natural logarithms. In the 
presentation of the geometric mean in Chapter 3, we saw that the sum of logarithms of 
two terms is the logarithm of the product of the terms — that is,

 ln x1 + ln x2 = ln(x1x2).

In the same way, the difference of logarithms of two terms is the logarithm of the quo-
tient of the terms — that is,

 
ln ln ln .x x

x

x
1 2

1

2

− = ( )
Thus, we have the relation

 
′ = +( ) − −( )[ ] = +

−( )z r r
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Let us apply these formulas for fi nding the 95 percent confi dence interval for the 
correlation between systolic and diastolic blood pressure for 12 adults just mentioned. 
Since r is 0.894, z′ is

 
0 5

1 0 894

1 0 894
0 5 17 8679 0 5 2 8830 1 4415. ln

.

.
. ln . . . . .( ) +

−( ) = ( ) = ( ) =

The standard deviation of z′ is 1 12 3− ,  which is 0.3333. Thus the interval for 
(0.5)ln[(1 + r)/(1 − r)] is from 01.4415 − 1.96(0.3333) to 1.4415 + 1.96(0.3333) or from 
0.7882 to 2.0948.

To fi nd the confi dence interval for r, we fi rst perform the inverse transformation on 
twice the lower and upper limits of the interval just calculated. The inverse transforma-
tion of the natural logarithm, ln, is the exponential transformation. This means that

 exp(ln x) = x.

After obtaining the exponential of twice a limit, call it a, further manipulation leads to 
the following equation:
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The exponential of twice the lower limit — that is, two times 0.7882 — is the exponential 
of 1.5764, which is 4.83785, and this is the value used for a for the lower limit. The 
lower limit for r is
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Similarly, the upper limit for r is
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Therefore, the 95 percent confi dence interval for the Pearson correlation coeffi cient 
between systolic and diastolic blood pressure in the population is from 0.657 to 0.970. 
The interval does not include 0. Thus, it is reasonable to conclude that there is a strong 
positive association between systolic and diastolic blood pressures among patients in 
the DIG clinical trial. These calculations are easily performed by a program (see 
Program Note 7.4 on the website). The preceding material also applies to the Spearman 
correlation coeffi cient for sample sizes greater than or equal to 10.

7.7   Prediction and Tolerance Intervals Based on 
the Normal Distribution

As we have seen, knowledge that the data follow a specifi c distribution can be used 
effectively in the creation of confi dence intervals. This knowledge can also be used in 
the formation of prediction and tolerance intervals, and this use is shown next.

7.7.1   Prediction Interval

The distribution-free method for forming intervals used specifi c observed values of the 
variable under study. In contrast, the formation of intervals based on the normal distri-
bution uses the sample estimates of its parameters: the mean and standard deviation. 
Assuming that the data follow the normal distribution, the prediction interval is formed 
by taking the sample mean plus or minus some value. This form is the same as that 
used in the construction of the confi dence interval for the population mean. However, 
we know that the prediction interval will be much wider than the confi dence interval, 
since the prediction interval focuses on a single future observation.

The confi dence interval for the mean, when the population variance is unknown, is

 
x t

s

n
n± ⎛

⎝⎜
⎞
⎠⎟

− −1 1 2, .α

The estimated standard error of the sample mean, s n ,  can also be expressed as 

s n2 1( )[ ].  The variance of a future observation is the sum of the variance of an obser-
vation about the sample mean and the variance of the sample mean itself, that is, s2 + 
s2/n. Thus, the estimated standard error of a future observation is s n2 1 1+( )[ ]  and 
the corresponding prediction interval is
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Let us calculate the prediction interval for the systolic blood pressure data just used 
in the calculation of the 90 percent confi dence interval for the mean. The sample mean 
was 94.75  mmHg, and the sample standard deviation was 10.25  mmHg, based on a 
sample size of 60. The value of t59,0.95 used in the 90 percent confi dence interval was 
1.671. The value of s n1 1+( )  is 10 335 10 25 1 1 60. . .= +[ ]( )  Therefore, the prediction 
interval is

 94.75 ± 1.671 (10.335)

and the lower and upper limits are 77.48 and 112.02  mmHg, respectively. These values 
are contrasted with 92.54 and 96.96  mmHg, limits of the confi dence interval for the 
mean. Thus, as expected, the 90 percent prediction interval for a single future observa-
tion is much wider than the corresponding 90 percent confi dence interval for the 
mean.

7.7.2   Tolerance Interval

The tolerance interval is also formed by taking the sample mean plus or minus some 
quantity, k, multiplied by the estimate of the standard deviation. Since the derivation of 
k is beyond the level of this book, we shall simply use its value found in Table B8. In 
symbols, the (1 − a)  *  100 percent tolerance interval containing p percent of the popula-
tion based on a sample of size n is

 x– ± kn,p,1−a s.

Let us use Table B8 to fi nd the 90 percent tolerance interval containing 95 percent 
of the systolic blood pressure values in the population based on the fi rst sample of 60 
observations from above. From Table B8 we fi nd that k60,0.95,0.90’s value is 2.248. There-
fore, the tolerance interval is

 94.75 ± 2.248 (10.25)

which gives limits of 71.71 and 117.79. One-sided prediction and tolerance intervals 
based on the normal distribution are also easy to construct.

Conclusion
In this chapter, the concept of interval estimation was introduced. We presented predic-
tion, confi dence, and tolerance intervals and explained their applications. We showed 
how distribution-free intervals and intervals based on the normal distribution were cal-
culated. The idea and use of confi dence intervals discussed in this chapter will be 
explored further to introduce methods of testing statistical hypotheses in the next two 
chapters. Parenthetically, it is worth pointing out that the idea of confi dence interval is 
often expressed as a margin of error in journalistic reporting, which refers to one-half 
of the width of a two-sided confi dence interval.

We also pointed out that characteristics — for example, size — of the intervals could 
be examined before actually conducting the experiment. If the characteristics of the 
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interval are satisfactory, the investigator uses the proposed sample size. If the charac-
teristics are unsatisfactory, the design of the experiment, the topic of the next chapter, 
needs to be modifi ed.

EXERCISES

7.1 Assume that the AML patients shown in Exercise 3.7 can be considered a simple 
random sample of all AML patients.
a. Calculate the 95 percent confi dence interval for the population mean survival 

time after diagnosis for AML patients.
b. Interpret this confi dence interval so that someone who knows no statistics 

can understand it.
c. Calculate the approximate 95 percent confi dence interval for the median 

survival time. Compare the intervals for the population mean and median.
d. There are two methods for forming the tolerance interval. Use both methods 

to form the approximate 95 percent tolerance interval containing 90 percent 
of the survival times for the population of AML patients. Which method do 
you think is the more appropriate one to use here? Provide your rationale.

7.2 Calculate a 90 percent confi dence interval for the population median length of 
stay based on the data from the patient sample shown in Exercise 3.10. Is it 
appropriate to calculate a confi dence interval for the population mean based on 
these data? Support your answer.

7.3 Find a study from the health literature that uses confi dence intervals for one of 
the statistics covered in this chapter. Provide a reference for the study and briefl y 
explain how confi dence intervals were used.

7.4 The following table shows the average annual fatality rate per 100,000 workers 
based on the 1980–1988 period by state along with the state’s composite score 
on a scale created by the National Safe Workplace Institute (NSWI). The scale 
takes into account prevention and enforcement activities and compensation paid 
to the victim. The data are taken from the Public Citizen Health Research Group 
(1992).

 Fatalitya NSWIb  Fatality NSWI  Fatality NSWI
State Rate Score State Rate Score State Rate Score

CT 1.9 65 SC 6.7 26 LA 11.2 31
MA 2.4 73 VT 6.8 38 NE 11.3 27
NY 2.5 76 IL 6.9 76 NV 11.5 30
RI 3.3 59 NC 7.2 47 TX 11.7 72
NJ 3.4 80 WA 7.7 55 KY 11.9 32
AZ 4.1 40 IN 7.8 47 NM 12.0 14
MN 4.3 64 ME 7.8 67 AR 12.5 11
NH 4.5 56 TN 8.1 24 UT 13.5 26
OH 4.8 55 OK 8.7 53 ND 13.8 21
MI 5.3 63 AL 9.0 25 MS 14.6 25
MO 5.3 42 KS 9.1 15 SD 14.7 25
MD 5.7 46 IA 9.2 54 WV 16.2 47
DE 5.8 40 CO 9.3 52 ID 17.2 22
HI 6.0 25 FL 9.3 48 MT 21.6 28
PA 6.1 55 VA 9.9 60 WY 29.5 12
WI 6.3 58 GA 10.3 36 AK 33.1 59
CA 6.5 81 OR 11.0 63
aAverage annual fatality rate per 100,000 workers based on 1980–1988 data
bNational Safe Workplace Institute Score (116 is the maximum and a higher score is better)
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 During the 1980–1988 period, the National Institute of Occupational Safety and 
Health reported that there were 56,768 deaths in the workplace. The preceding 
rates are based on that number. The National Safety Council reported 105,500 
deaths for the same period. Do you think that there should be any relationship 
between the fatality rates and the NSWI scores? If you think that there is a 
nonzero correlation, will it be positive or negative? Explain your reasoning. 
Calculate the Pearson correlation coeffi cient for these data. Is there any reason 
to calculate a confi dence interval based on the correlation value you calculated? 
Why or why not?

7.5 There is some concern today about excessive intakes of vitamins and minerals, 
possibly leading to nutrient toxicity. For example, many persons take vitamin 
and mineral supplements. It is estimated that 35 percent of the adult U.S. popu-
lation consumes vitamin C in the form of supplements (LSRO 1989). Based on 
survey results, among users of vitamin C supplements, the median intake was 
333 percent of the recommended daily allowance. Suppose that you take a tablet 
that claims to contain 500  mg vitamin C. Which type of interval — prediction, 
confi dence, or tolerance — about the vitamin C content in the tablets is of most 
interest to you? Explain your reasoning.

7.6 In a test of a laboratory’s measurement of serum cholesterol, 15 samples 
containing the same known amount (190  mg/dL) of serum cholesterol are 
submitted for measurement as part of a larger batch of samples, one sample 
each day over a three-week period. Suppose that the following daily values 
in mg/dL for serum cholesterol for these 15 samples were reported from the 
laboratory:

180 190 197 199 210 187 192 199 214 237 188 197 208 220 239

 Assume that the variance for the measurement of serum cholesterol is supposed 
to be no larger than 100  mg/dL. Construct the 95 percent confi dence interval for 
this laboratory’s variance. Does 100  mg/dL fall within the confi dence interval? 
What might be an explanation for the pattern shown in the reported values?

7.7 The percentage of persons in the United States without health insurance in 1991 
was 14.1 percent, or approximately 35.5 million persons. The following data 
show the percent of persons without health insurance in 1991 by state (PCHRG 
1993) along with the 1990 population of the state (U.S. Bureau of the Census 
1991). The District of Columbia is treated as a state in this presentation. Cal-
culate the sample Pearson correlation coeffi cient between the state population 
total and its percent without health insurance. How can these counts be viewed 
as a sample? Calculate a 95 percent confi dence interval for the Pearson correla-
tion coeffi cient in the population. Does there appear to be a strong linear relation 
between these two variables? Provide at least one additional variable that may 
be related to the proportion without health insurance in each state and provide 
a rationale for your choice.
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7.8 Calculate the mean state proportion of those without health insurance from data 
in Exercise 7.7. Is this number the same as the overall U.S. percentage? Explain 
how the state information can be used to obtain the overall U.S. percentage of 
14.1.

7.9 Suppose you are planning a simple random sample survey to estimate the mean 
family out-of-pocket expenditures for health care in your community during 
the last year. In 1990, the approximate per capita (not per family) out-of-pocket 
expenditure was $525 (NCHS 1992). From previous studies in the literature, 
you think that the population standard deviation for family out-of-pocket expen-
ditures is $500. You want the 90 percent confi dence interval for the community 
mean family out-of-pocket expenditures to be no wider than $100.
a. How many families do you require in the sample to satisfy your requirement 

for the width of the confi dence interval for the mean?
b. Do you believe that family out-of-pocket expenditures follow the normal 

distribution? Support your answer.

  Percent without   Percent without
State Populationa Health Insurance State Population Health Insurance

New England   East South Central
ME  1.23 11.1 KY 3.69 13.1
NH  1.11 10.1 TN 4.88 13.4
VT 0.56 12.7 AL 4.04 17.9
MA 6.02 10.9 MS 2.57 18.9
RI 1.00 10.2
CT 3.29  7.5 West South Central
   AR 2.35 15.7
Mid Atlantic  LA 4.22 20.7
NY 17.99 12.3 OK 3.15 18.2
NJ 7.73 10.8 TX 16.99 22.1
PA 11.88 7.8
   Mountain
East North Central  MT 0.80 12.7
OH 10.85 10.3 ID 1.01 17.8
IN 5.54 13.0 WY 0.45 11.3
IL 11.43 11.5 CO 3.29 10.1
MI 9.30  9.0 NM 1.52 21.5
WI 4.89  8.0 AZ 3.67 16.9
   UT 1.72 13.8
West North Central  NV 1.20 18.7
ND 0.64  7.6
SD 0.70  9.9 Pacifi c
NE 1.58  8.3 WA 4.87 10.4
KS 2.48 11.4 OR 2.84 14.2
MN 4.38  9.3 CA 29.76 18.7
IA 2.78  8.8 AK 0.55 13.2
MO 5.12 12.2 HI 1.11  7.0
South Atlantic
DE 0.67 13.2
MD 4.78 13.1
VA 6.19 16.3
WV 1.79 15.7
FL 12.94 18.6
NC 6.63 14.9
SC 3.49 13.2
GA 6.48 14.1
DC 0.61 25.7
aPopulation is expressed in millions
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c. Regardless of your answer, assume that you said that the family out-of-
pocket expenditures do not follow a normal distribution. Discuss why it is 
still appropriate to use the material based on the normal distribution in 
fi nding the confi dence interval for the population mean.

d. In the conduct of the survey, how would you overcome reliance on a 
person’s memory for out-of-pocket expenditures for health care for the past 
year?

7.10 In 1979, the Surgeon General’s Report on Health Promotion and Disease Pre-
vention and its follow-up in 1980 established health objectives for 1990. One 
of the objectives was that the proportion of 12- to 18-year-old adolescents 
who smoked should be reduced to below 6 percent (NCHS 1992). Suppose that 
you have monitored progress in your community toward this objective. In a 
survey conducted in 1983, you found that 17 of 90 12- to 18-year-old adolescents 
admitted that they were smokers. In your 1990 simple random sample survey, 
you found 11 of 85 12- to 18-year-old adolescents who admitted that they 
smoked.
a. Construct a 95 percent confi dence interval for the proportion of smokers 

among 12- to 18-year-old adolescents in your community. Is 6 percent con-
tained in the confi dence interval?

b. Construct a 99 percent confi dence interval for the difference in the propor-
tion of smokers among 12- to 18-year-old adolescents from 1983 to 1990. Do 
you believe that there is a difference in the proportion of smokers among the 
12- to 18-year-old adolescents between 1983 and 1990? Explain your 
answer.

c. Briefl y describe how you would conduct a simple random sample of 12- to 
18-year-old adolescents in your community. Do you have confi dence in the 
response to the question about smoking? Provide the rationale for your 
answer. What is a method that might improve the accuracy of the response 
to the smoking question?

7.11 Construct the 95 percent confi dence interval for the difference in the population 
mean survival times between the AML and ALL patients shown in Table 7.6. 
Since there appears to be a difference in mean ages between the AML and ALL 
patients, perhaps we should adjust for age. One way to do this is to calculate 
age-specifi c confi dence intervals. For example, calculate the confi dence interval 
for the difference in population mean survival times for AML and ALL patients 
who are less than or equal to 40 years old. Is the confi dence interval for those 
less than or equal to 40 years of age consistent with the confi dence interval 
which has ignored the ages? How else might we adjust for the age variable in 
the comparison of the AML and ALL patients?

7.12 Suppose we wish to investigate the claims of a weight loss clinic. We randomly 
select 20 individuals who have just entered the program, and we follow them 
for six weeks. The clinic claims that its members will lose on the average 10 
pounds during the fi rst six weeks of membership. The beginning weights and 
the weights after six weeks are shown following. Based on this sample of 20 
individuals, is the clinic’s claim plausible?
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7.13 In a study of aplastic anemia patients, 16 of 41 patients on one treatment 
achieved complete or partial remission after three months of treatment com-
pared to 28 of 43 patients on another treatment (Frickhofen et al. 1991). Con-
struct a 99 percent confi dence interval on the difference in proportions that 
achieved complete or partial remission. Does there appear to be a difference in 
the population proportions of the patients who would achieve complete or 
partial remission on these two treatments?

7.14 In 1970, Japanese American women had a fertility rate (number of live births 
per 1000 women ages 15–44) of 51.2, considerably lower than the rate of 87.9 
for all U.S. women in this age group. Use the following data to calculate an 
age-adjusted fertility rate for Japanese American women and approximate the 
standard deviation of the age-adjusted rate.

 Beginning Weight  Beginning Weight
Person Weight at 6 Weeks Person Weight at 6 Weeks

 1 147 143 11 246 239
 2 163 151 12 218 222
 3 198 184 13 143 135
 4 261 245 14 129 124
 5 233 229 15 154 136
 6 227 220 16 166 159
 7 158 161 17 278 263
 8 154 147 18 228 205
 9 162 155 19 173 164
10 249 254 20 135 122

Age U.S. Age-Specifi c Fertility Rate Number of Japanese American Women

15–19 69.6 24,964
20–24 167.8 23,435
25–29 145.1 22,093
30–34 73.3 23,055
35–39 31.7 32,935
40–44 8.6 34,044

Source: U.S. Population Census, 1970, P(2)-1G and U.S. Vital Statistics, 1970
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