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As was mentioned in Chapter 3, often we want to do more than simply analyze or sum-
marize the data in graphs or statistics. For example, we may want to determine whether 
two drugs or treatments are equally effective and safe or whether the age-adjusted death 
rates for two areas are the same. To answer these questions, we require knowledge of 
probability, the topic of this chapter.

4.1   A Defi nition of Probability
We have all encountered the use of probability — in the weather forecast, for example. 
The forecast usually involves an estimate of the probability of rain, as in the statement 
that “the probability of rain tomorrow is 20 percent.” As its use in the weather forecast 
demonstrates, probability is a numerical assessment of the likelihood of the occurrence 
of an outcome of a random variable. In the weather forecast, weather is the random 
variable and rain is one of its possible outcomes.

Before considering the numerical assessment of likelihood, we should consider 
random variables. There are both discrete and continuous random variables. A discrete 
(nominal, categorical or ordinal) random variable is a quantity that refl ects an attribute 
or characteristic that takes on different values with specifi ed probabilities. A continuous 
(interval or ratio) random variable is a quantity that refl ects an attribute or characteristic 
that falls within an interval with specifi ed probabilities.

Hypertension status is a discrete random variable when the values or levels of this 
variable are defi ned as its presence (can be defi ned as systolic blood pressure greater 
than 140  mmHg, diastolic blood pressure greater than 90  mmHg, or taking antihyper-
tensive medication) or absence. Other examples of discrete random variables include 
racial status, the number of children in a family, and type of health insurance. Examples 
of continuous random variables include height, blood pressure, and the amount of lead 
emissions as they are usually measured.

4

Ch004-P369492.indd   71 11/4/2006   11:18:22 AM



72  Probability and Life Tables

We shall defi ne probability of the occurrence of an outcome or interval of a random 
variable as its relative frequency in an infi nite number of trials or in a population. A 
probability is a population parameter. An observed proportion (relative frequency) from 
a sample is a statistic that can be used to estimate a probability. We shall use the data 
in Table 4.1 to demonstrate the calculation of the probability of different racial categories 
in the United States in 2000. As shown in Table 4.1, there are four major racial groups 
used in the U.S. Population Census and a fi fth category that combines all other races. 
Those who claimed two or more races are in the sixth category.

The probability of a person selected at random being white was 0.751 (= 211460626 
/281421906), or 75.1 percent. The corresponding probabilities of being black, Asian and 
Pacifi c Islander, American Indian, and some other races were 0.123, 0.038, 0.009, 
and 0.055, respectively. Finally, the probability of a person claiming two or more races 
was 0.024. These six probabilities sum to 1.000 or 100.0 percent, as shown in Table 
4.1.

Since a probability is the number of occurrences of an outcome divided by the total 
number of occurrences of all possible outcomes of the variable under study, this means 
that a probability cannot be larger than 1.00 or 100 percent in value. By the same reason-
ing, a probability cannot be smaller than 0.00 or 0 percent in value. Therefore, the only 
valid values for probabilities range from 0 to 1 or 0 to 100 percent. Additionally, use of 
the relative frequency defi nition means that the sum of the probabilities of all the possible 
outcomes of a random variable must be 1.00 or 100 percent. If a probability falls outside 
the 0 to 1 range, or if the sum of the probabilities of all the possible outcomes of a vari-
able do not sum to 1 (with allowance for rounding), a mistake has been made.

For many variables in the health fi eld, the probability of an outcome is estimated 
from a large number of observations and may change over time. For example, the prob-
abilities of the different racial groups in the United States in 2020 will be different from 
the 2000 probabilities. As an additional example of changing probabilities, the estimates 
of the age-adjusted probabilities of obese persons (body mass index greater than or equal 
to 30) among U.S. adults (ages 20–74 years) increased from 0.151 in 1976–1980 to 0.233 
in 1988–1994 and to 0.311 in 1999–2002 (NCHS 2004). This change in the values of a 
probability contrasts with the lack of change in the probabilities associated with physical 
phenomena, such as tossing a coin or a pair of dice. For example, when a fair coin is 
tossed, the probability of a head is assumed to be 0.5 or 50 percent, and it does not 
change.

The listing of the probabilities of all possible outcomes of a discrete variable is its 
probability distribution. For example, the probability distribution of the racial composi-

Table 4.1 Percent of population in selected racial groups: United States, 2000.

Race Number Percent

Total ............................................................................  281,421,906 100.0
White ..........................................................................  211,460,626 75.1
Black or African American ....................................  34,658,190 12.3
Asian and Pacifi c Islander .....................................  10,641,833 3.8
American Indian and Alaskan Native .................  2,475,956 0.9
Some other races ....................................................  15,359,073 5.5
Two or more races ..................................................  6,826,228 2.4

Source: U.S. Bureau of the Census, 2000
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tion of the U.S. population in 2000 is shown in the last column of Table 4.1. More will 
be said about probability distributions and their use in the next chapter.

4.2   Rules for Calculating Probabilities
A few basic rules govern the calculation of probabilities of compound outcomes or 
events, and we will use the data in Table 4.2 to explain them. Entries in Table 4.2 are 
the number of live births by birth weight and the trimester in which prenatal care was 
begun. For example, the entry in the third row and the second column, 3271, is the 
number of live births to women who had begun their prenatal care during their second 
trimester and whose babies’ birth weights were greater than 7.7  lb.

4.2.1   Addition Rule for Probabilities

The data in Table 4.2 can be used to determine whether or not there is a relation between 
the timing of the beginning of prenatal care and birth weight. However, before examin-
ing this issue, let us calculate a few additional probabilities. For example, the probability 
of a woman in Harris County, Texas, in 1986 having a low birth weight baby (less than 
or equal to 5.5  lb) was 0.069 (= 3541/51473). This value is very close to the 1986 value 
of 0.068 for the United States (NCHS 1992). Let us consider a slightly more complex 
example. The probability of late prenatal (third trimester) or no prenatal care is simply 
the sum of their individual probabilities, that is, 2337/51473 + 1695/51473 which is 0.078 
(= 4032/51473). This value is slightly greater than the corresponding 1986 U.S. value 
of 0.060 (NCHS 1992). In these calculations of probabilities, we are considering births 
in Harris County, Texas, in 1986 as our population. If the intended population were 
Texas or the United States, then the preceding values would be sample estimates — that 
is, observed proportions — of the probabilities. However, a sample consisting of births 
in Harris County should not be used to draw inferences about births in Texas or the 
United States because the Harris County births are likely not to be representative of 
either of these two larger units.

So far, these probabilities have focused on row or column totals (marginal totals), 
not on the numbers in the interior of the table (cell entries). Entries in the interior of 
the table deal with the intersection of outcomes or events. For example, the outcome of 
a woman having a live birth of less than or equal to 5.5  lb and having begun her prenatal 
care during the fi rst trimester is the intersection of those two individual outcomes. The 

Table 4.2 Number of live births by birth weight and trimester of fi rst prenatal care: Harris County, 
Texas, 1986 (excluding 1,180 births with unknown birth weight or trimester of fi rst prenatal care).

 Trimester Prenatal Care Began

Birth Weight 1st 2nd 3rd No Care Total

≤5.5  lb; ∼2,500  g  2,412 754 141 234 3,541
5.6–7.7  lb; ∼2,500–3,500  g 20,274 5,480 1,458 1,014 28,226
>7.7  lb; ∼3,500  g 15,250 3,271 738 447 19,706

Total 37,936 9,505 2,337 1,695 51,473

Source: Harris County Health Department, 1990, Table 1.S
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74  Probability and Life Tables

probability of this intersection — that is, of these two outcomes occurring together — is 
easily found to be 0.047 (= 2412/51473).

We just found the probability of a baby weighing less than or equal to 5.5  lb by using 
the row total of 3541 and dividing it by the grand total of 51,473. Note that we can also 
express this probability in terms of the probability of the intersection of a birth weight 
of less than or equal to 5.5  lb with each of the prenatal care levels — that is,
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This can be expressed in symbols. Let A represent the outcome of a birth weight less 
than or equal to 5.5  lb and Bi, i = 1 to 4, represent the four prenatal care levels. The 
symbol ∩ is used to indicate the intersection (to be read as “and”) of two individual 
outcomes. Then we have

 Pr{A} = Pr{A ∩ B1} + Pr{A ∩ B2} + Pr{A ∩ B3} + Pr{A ∩ B4}

which, using the summation symbol, is

 
Pr Pr .A A Bi

i

{ } = ∩{ }∑
 

(4.1)

Suppose now that we want to fi nd for a woman who had a live birth the probability 
that either the birth weight was 5.5  lb or less or the woman began her prenatal care 
during the fi rst trimester. It is tempting to add the two individual probabilities — of a 
birth weight less than or equal to 5.5  lb and of prenatal care beginning during the fi rst 
trimester — as we had done previously. However, if we added the entries in the fi rst 
row (birth weights less than or equal to 5.5  lb) to those in the fi rst column (prenatal 
care begun during the fi rst trimester), the entry in the intersection of the fi rst row 
and column would be included twice. Therefore, we have to subtract this intersection 
from the sum of the two individual probabilities to obtain the correct answer. The 
calculation is
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= + − =3541 37936 2412
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This can be succinctly stated in symbols. Let A represent the outcome of live births of 
5.5  lb or less and B represent the outcome of the initiation of prenatal care during the 
fi rst trimester. An additional symbol ∪ is used to indicate the union (to be read as “or”) 
of two individual outcomes. The intersection of these two outcomes is represented by 
A ∩ B. In symbols, the rule is

 Pr{A ∪ B} = Pr{A} + Pr{B} − Pr{A ∩ B}. (4.2)

This rule also was used in the earlier example of late or no prenatal care, but, in that 
case, the outcomes were disjointed — that is, there was no overlap or intersection. 
Hence, the probability of the intersection was zero.
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As the sum of the probabilities of all possible outcomes is one, if there are only two 
possible outcomes — say, A and not A (represented by A

–
) — we also have the following 

relationship:

 Pr{A} = 1 − Pr{A
–}. (4.3)

4.2.2   Conditional Probabilities

Suppose we change the wording slightly in the preceding example. Based on the data 
in Table 4.2, we now want to fi nd the probability of a woman having a live birth of less 
than or equal to 5.5  lb (event A) conditional on or given that her prenatal care was begun 
during the fi rst trimester (event B). The word conditional limits our view in that we 
now focus on the 37,936 women who began their prenatal care during the fi rst trimester. 
Thus, the probability of a woman having a live birth weighing less than or equal to 
5.5  lb, given that she began her prenatal care during the fi rst trimester, is 0.064 (= 2412
/37936). Dividing both the numerator and denominator of this calculation by 51473 (the 
total number of women) does not change the value of 0.064, but it allows us to defi ne 
this conditional probability (the probability of A conditional on the occurrence of B) in 
terms of other probabilities. The numerator divided by the total number of women (2412 
/51473) is the probability of the intersection of A and B, and the denominator divided 
by the total number of women (37936/51473) is the probability of B. In symbols, this is 
expressed as

 
Pr

Pr

Pr
A B

A B

B
{ } = ∩{ }

{ }  
(4.4)

where Pr{A | B} represents the probability of A given that B has occurred.

Conditional probabilities often are of greater interest than the unconditional proba-
bilities we have been dealing with as will be shown following. Before doing that, note 
that we can use the conditional probability formula to fi nd the probability of the inter-
section — that is,

 Pr{A ∩ B} = Pr{A | B}  ⋅  Pr{B}. (4.5)

Thus, if we know the probability of A conditional on the occurrence of B, and we also 
know the probability of B, we can fi nd the probability of the intersection of A and B. 
Note that we can also express the probability of the intersection as

 Pr{A ∩ B} = Pr{B | A}  ⋅  Pr{A}. (4.6)

Table 4.3 repeats the data from Table 4.2 along with three different sets of probabili-
ties. The fi rst set of probabilities (row R) is conditional on the birth weight; that is, it 
uses the row totals as the denominators in the calculations. The second set (row C) is 
conditional on the trimester that prenatal care was begun; that is, it uses the column 
totals in the denominator. The third set of probabilities (row U) is the unconditional set 
— that is, those based on the total of 51,473 live births. The probabilities in the Total 
column are the probabilities of the different birth weight categories; that is, the probabil-
ity distribution of the birth weight variable and those beneath the Total row are the 
probabilities of the different trimester categories — that is, the probability distribution 
of the prenatal care variable. As just mentioned, these probabilities are based on the 
population of births in Harris County, Texas, in 1986.
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76  Probability and Life Tables

Let us consider the entries in the row 1, column 1 cell. The fi rst two entries below 
the frequency of the cell are conditional probabilities. The value 0.681 (= 2412/3541) is 
the probability based on the row total; that is, it is the probability of a woman having 
begun her prenatal care during the fi rst trimester given that the baby’s birth weight was 
less than or equal to 5.5  lb. The value 0.064 (= 2412/37936) is the probability based on 
the column total; that is, it is the probability of a birth weight of less than or equal to 
5.5  lb given that the woman had begun her prenatal care during the fi rst trimester. The 
last value, 0.047 (= 2412/51473), is the unconditional probability; that is, it is based on 
the grand total of 51,473 live births. It is the probability of the intersection of a birth 
weight less than or equal to 5.5  lb with the prenatal care having been begun during the 
fi rst trimester.

As Table 4.3 shows, at least three different probabilities, or observed proportions if 
the data are a sample, can be calculated for the entries in the two-way table. The choice 
of which probability (row, column, or unconditional) to use depends on the purpose of 
the investigation. In this case, the data may have been tabulated to determine whether 
or not the timing of the initiation of the prenatal care had any effect on the birth weight 
of the infant. If this is the purpose of the study, the column-based probabilities may be 
the more appropriate to use and report. The column-based calculations give the proba-
bilities of the different birth weight categories conditional on when the prenatal care 
was begun. The row-based calculations give the probability of the trimester prenatal 
care was initiated given the birth weight category. However, these row-based probabili-
ties are of no interest because the birth weight cannot affect the timing of the prenatal 
care. The unconditional probabilities are less informative in this situation, as they also 
refl ect the row and column totals. For example, compare the unconditional probabilities 
in the fi rst and third columns in the fi rst row — 0.047 and 0.003. Even though we have 
seen that there is little difference in the corresponding column-based probabilities of 
0.064 and 0.060, these unconditional values are very different. The value of 0.047 is 
larger mainly because there are 37,936 live births in the fi rst column compared to only 
2337 live births in the third column. However, the unconditional probabilities may be 

Table 4.3 Number and probabilities of live births by trimester of fi rst prenatal care and birth weight: 
Harris County, Texas, 1986.

  Trimester Prenatal Care Began

Birth Weight  1st 2nd 3rd No Care Total

≤5.5  lb; ∼2,500  g   2,412 754 141 234 3,541
 Ra 0.681 0.213 0.040 0.066
 C 0.064 0.079 0.060 0.138 0.069
 U 0.047 0.015 0.003 0.005

5.6–7.7  lb; ∼2,500–3,500  g  20,274 5,480 1,458 1,014 28,226
 R 0.718 0.194 0.052 0.036
 C 0.534 0.577 0.624 0.598 0.548
 U 0.394 0.106 0.028 0.020

>7.7  lb; ∼3,500  g  15,250 3,271 738 447 19,706
 R 0.774 0.166 0.037 0.023
 C 0.402 0.344 0.316 0.264 0.383
 U 0.296 0.064 0.014 0.009

Total  37,936 9,505 2,337 1,695 51,473
 R 0.737 0.185 0.045 0.033 1.000
aR, row; C, column; and U, unconditional
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useful in planning and allocating resources for maternal and child health services 
programs.

Using the column-based values, women who began their prenatal care during the 
fi rst trimester had a probability of a low birth weight baby of 0.064. This value is com-
pared to 0.079, the probability of a low birth weight baby for those who began their 
prenatal care during their second trimester, to 0.060 for those who began their prenatal 
care during the third trimester, and to 0.138 for those who received no prenatal care. 
There is little difference in the probabilities of a low birth weight baby among women 
who received prenatal care. However, the probability of a low birth weight baby is about 
twice as large for women who received no prenatal care compared to women who 
received prenatal care. The effect of prenatal care is most clearly evident in the probabil-
ity of having a baby with a birth weight of greater than 7.7  lb. In this category, the 
probabilities are 0.402, 0.344, 0.316, and 0.264 for the fi rst, second, and third trimesters 
and no prenatal care, respectively.

Based on the trend in the probabilities of a birth weight of greater than 7.7  lb, one 
might conclude that there is an effect of prenatal care. However, to do so is inappropriate 
without further information. First, although these births can be viewed as constituting 
a population — that is, all the live births in Harris County in 1986 — they could also 
be viewed as a sample in time, one year selected from many, or in place, one county 
selected from many. From the perspective that these births are a sample, there is sam-
pling variation to be taken into account, and this will be covered in Chapter 11. Second, 
and more important, these data do not represent a true experiment. Chapter 6 presents 
more on experiments, but, briefl y, the women were not randomly assigned to the differ-
ent prenatal care groups — that is, to the fi rst, second, or third trimester groups or to 
the no prenatal care group. Thus, the women in these groups may differ on variables 
related to birth weight — for example, smoking habits, amount of weight gained, and 
dietary behavior. Without further examination of these other factors, it is wrong to 
conclude that the variation in the probabilities of birth weights is due to the time when 
prenatal care was begun.

Example 4.1

Suppose that a couple has two children and one of them is a boy. What is the probabil-
ity that both children are boys? For a couple with two children, there are four possible 
outcomes: boy and boy, boy and girl, girl and boy, girl and girl. If one of the two 
children is a boy, then there are three possible outcomes, excluding the (girl and girl) 
outcome. Therefore, the probability of having two boys is 1/3 (one of three possible 
outcomes). Applying the conditional probability rule, Equation (4.4), we can calcu-
late this probability by (1/4) / (1 − 1/4).

4.2.3   Independent Events

Suppose we were satisfi ed that there are no additional factors of interest in the examina-
tion of prenatal care and birth weight and only the data in Table 4.2 were to be used to 
determine whether or not there was a relation between when prenatal care was initiated 
and birth weight. Row C in Table 4.3 shows the column-based probabilities — that is, 
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those conditional on which trimester care was begun or whether care was received — 
and these are the probabilities to be used in the study.

If there was no relationship between the prenatal care variable and the birth weight 
variable — that is, if these two variables were independent — what values should the 
column-based probabilities have? If these variables are independent, this means that the 
birth weight probability distribution is the same in each of the columns. The last column 
in Table 4.3 gives the birth weight probability distribution, and this is the distribution 
that will be in each of the columns if the birth weight and prenatal care variables are 
independent. Table 4.4 shows the birth weight probability distribution for the situation 
when these two variables are independent.

Table 4.4 Probabilities conditional on trimester under the assumption of independence of birth weight 
level and trimester of fi rst prenatal care: Harris County, Texas, 1986.

 Trimester Prenatal Care Began

Birth Weight 1st 2nd 3rd No Care Total

≤ 5.5  lb; ∼2500  g 0.069 0.069 0.069 0.069 0.069
5.6–7.7  lb; ∼2500–3500  g 0.548 0.548 0.548 0.548 0.548
> 7.7  lb; ∼3500  g 0.383 0.383 0.383 0.383 0.383

Total 1.000 1.000 1.000 1.000 1.000

Example 4.2

For a couple with one child, there are two possible outcomes: a boy or a girl. It is 
assumed that the probability of a girl is the same as the probability of a boy — that 
is, 0.5. For a couple with two children, there are four possible outcomes, as seen in 
Example 4.1. The probability of each outcome is 0.25 (one out of the four possible 
outcomes). We have to realize that the probability of having one boy and one girl is 
0.5, accounting for two of four possible outcomes. However, U.S. vital statistics 
consistently show that about 105 boys are born per 100 girls (a sex ratio at birth of 
105; Mathews and Hamilton 2005), which suggests that the probability of having a 

The entries in Table 4.4 are conditional probabilities — for example, of a birth weight 
less than or equal to 5.5  lb (A) given that prenatal care began during the fi rst trimester 
(B) under the assumption of independence. Hence, under the assumption of indepen-
dence of A and B, the probability of A given B is equal to the probability of A. In symbols, 
this is

 Pr{A | B} = P{A}

when A and B are independent. Combining this formula with the formula for the prob-
ability of the intersection — that is,

 Pr{A ∩ B} = Pr{A | B}  ⋅  Pr{B}

yields

 Pr{A ∩ B} = Pr{A}  ⋅  Pr{B}

when A and B are independent.
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boy is 0.51 and the probability of having a girl is 0.49. If we use these values of the 
case of two children, the probabilities of the four possible outcomes are 0.26 (= 0.51 
[0.51]), 0.25 (= 0.51 [1 − 0.51]), 0.25 (= [1 − 0.51] 0.51), and 0.24 (= [1 − 0.51] [1 − 
0.51]), respectively. The four probabilities add up to 1. The reason for multiplying 
two probabilities will become clearer in Example 4.3.

Example 4.3

Since the gender of the second child is independent of that of the fi rst child, the 
probability of two boys in row, based on vital statistics, is 0.51(0.51) = 0.26, as shown 
in Example 4.2. When considering diseases, it is unlikely that the disease status of 
one person is independent of that of another person for many infectious diseases. 
However, it is likely that the disease status of one person is independent of that of 
another for many chronic diseases. For example, let p be the probability that a person 
has Alzheimer’s disease. One person’s Alzheimer’s status should be independent of 
another’s status. Therefore, the probability of two persons having Alzheimer’s disease 
is the product of the probabilities of either having the disease — that is, p ⋅ p.

Establishing the dependence (a relation exists) or independence (no relation) of 
variables is what much of health research is about. For example, in the disease 
context, is disease status related to some variable? If there is a relation (dependency), 
the variable is said to be a risk factor for the disease. The identifi cation of risk factors 
leads to strategies for preventing or reducing the occurrence of the disease.

Example 4.4

Let us apply these defi nitions of probabilities to the example used for the randomized 
response technique in Chapter 2. In Figure 2.2 there were 12 yes responses among 
36 individuals to whom the randomized response technique was administered. We 
can denote as the probability of yes, Pr(Y) = 12/36 = 1/3. We know this observed 
probability is a combination of probabilities under two circumstances — that is, 
Pr(Head and Drunken driving) + Pr(Tail and Born in September or October). In 
symbols, this relationship is expressed as

Pr{Y} = Pr{H ∩ D} + Pr{T ∩ B}.

The two probabilities of intersection in the right hand side of equation can be 
expressed in terms of conditional probabilities, applying Equation (4.6) as follows:

Pr{Y} = Pr{D | H} ⋅ Pr{H} + Pr{B | T} ⋅ Pr{T}.

We know that Pr(H) = 1/2 and Pr(T) = 1 − Pr(H) = 1/2. Pr(D | H) is unknown quan-
tity, and we want to estimate this conditional probability. Pr(B | T) is known — that 
is, 2 months out of 12 months, 2/12 = 1/6.

If we solve the above equation for the unknown probability, Pr(D | H), then we 
have
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The result is 50 percent, which is the same as in Figure 2.2.

4.3   Defi nitions from Epidemiology
There are many quantities used in epidemiology that are defi ned in terms of probabili-
ties, particularly conditional probabilities. Several of these useful quantities are defi ned 
in this section and used in the next section to illustrate Bayes’ rule.

4.3.1   Rates and Probabilities

Various rates and relative numbers are used in epidemiology. A rate is generally inter-
preted as a probability — as a measure of likelihood that a specifi ed event occurs to a 
specifi ed population. Prevalence of a disease is the probability of having the disease. It 
is the number of people with the disease divided by the number of people in the defi ned 
population. The observed proportion of those with the disease in a sample is the sample 
estimate of prevalence. When the midyear population is used for the denominator, it is 
possible that the numerator contains persons not included in the denominator. For 
example, persons with the disease that move into the area in the second half of the year 
are not counted in the denominator, but they are counted in the numerator. When preva-
lence or other quantities use midyear population or person-years lived values, they are 
not really probabilities or proportions, although this distinction usually is unimportant. 
However, this distinction is important when estimating the probability of dying from 
the age-specifi c death rate as will be discussed later in conjunction with the life table.

Incidence of a disease is the probability that a person without the disease will develop 
the disease during some specifi ed interval of time. It is the number of new cases of the 
disease that occur during the specifi ed time interval divided by the number of people 
in the population who do not already have the disease.

Prevalence provides an idea of the current magnitude of the disease problem, whereas 
incidence informs as to whether or not the disease problem is getting worse.

Example 4.5

We consider the incidence and prevalence rates of AIDS based on the data from 
Health, United States, 2004 (NCHS 2004, Tables 1 and 52). By the end of 2002, 
829,998 cases of AIDS had been reported to the Centers for Disease Control and 
Prevention, and of those, 42,478 cases were reported in 2002. The estimated U.S. 
population as of July 1, 2002, was 288,369,000. Based on the cases reported in 2002 
and the estimated midyear population of 2002, the 2002 incidence rate of AIDS in 
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A specifi c rate of a disease is the disease rate for people with a specifi ed character-
istic, such as age, race, sex, occupation, and so on. It is the conditional probability of a 
person having the disease given that the person has the characteristic. For example, an 
age-specifi c death rate is a death rate conditional on a specifi ed age group, as seen in 
Chapter 3.

4.3.2   Sensitivity, Specifi city, and Predicted Value 
Positive and Negative

Laboratory test results are part of the diagnostic process for determining if a patient 
has some disease. Unfortunately in many cases, a positive test result — that is, the 
existence of an unusual value — does not guarantee that a patient has the disease. Nor 
does a negative test result, the existence of a typical value, guarantee the absence of the 
disease. To provide some information on the accuracy of testing procedures, their devel-
opers use two conditional probabilities: sensitivity and specifi city.

The sensitivity of a test (symptom) is the probability that there was a positive result 
(the symptom was present) given that the person has the disease. The specifi city of a 
test (symptom) is the probability that there was a negative result (the symptom was 
absent) given that the person does not have the disease. Note that one minus sensitivity 
is the false negative rate, and one minus specifi city is the false positive rate. Thus, large 
values of sensitivity and specifi city imply small false negative and false positive rates.

Sensitivity and specifi city are probabilities of the test result conditional on the disease 
status. These are values that the developer of the test has estimated during extensive 
testing in hospitals and clinics. However, as a potential patient, we are more interested 
in the probability of disease status conditional on the test result. Names given to two 
conditional probabilities that address the patient’s concerns are predicted value positive 
and predicted value negative. Predicted value positive is the probability of disease given 
a positive test result, and predicted value negative is the probability of no disease given 
a negative test result.

These four quantities can be expressed succinctly in symbols. Let T + represent 
a positive test result and T − represent a negative result. The presence of disease is 

the United States was 0.00014730 (42478/288369000) or 14.7 per 100,000 population. 
Since the rate is low, the rate is expressed as the number of cases per 100,000.

Based on the preceding data, it is diffi cult to estimate the prevalence rate because 
there is no information on the number of individuals with AIDS who had died prior 
to 2002. The AIDS death rate was reported starting in 1987. It steadily increased 
from 5.6 per 100,000 to 16.2 per 100,000 in 1995 and steadily declined to 4.9 per 
100,000 in 2002. Based on an average death rate of AIDS for the last two and half 
decades, it is roughly estimated that about 80 percent of those diagnosed prior to 
2002 had died by the end of 2001. Thus, of the 874,230 reported cases, we are assum-
ing that 630,016 (0.8{874230 − 42479}) had died, leaving 199,982 persons with AIDS 
in 2002. The prevalence rate of AIDS then was 0.00069349 (= 199982/288369000) 
or 69.3 per 100,000 population.
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indicated by D+ and its absence is indicated by D−. Then these four quantities can be 
expressed as conditional probabilities as follows:

Sensitivity ..............................................  Pr{T + | D+}
Specifi city ..............................................  Pr{T − | D−}
Predicted value positive ....................  Pr{D+ | T +}
Predicted value negative ...................  Pr{D− | T −}

All four of these probabilities should be large for a screening test to be useful to the 
screener and to the screenee. Discussions of these and related issues are plentiful in the 
epidemiologic literature (Weiss 1986).

It is possible to estimate these probabilities. One way is to select a large sample of 
the population and subject the sample to a screening or diagnostic test as well as to a 
standard clinical evaluation. The standard clinical evaluation is assumed to provide the 
true disease status. Then the sample persons can be classifi ed into one of the four cells 
in the 2 by 2 table in Table 4.5. For example, hypertension status is fi rst screened by 
the sphygmomanometer in the community and by a comprehensive clinical evaluation 
in the clinic. Or persons are screened for mental disorders fi rst by the DIS (Diagnostic 
Interview Schedule) and then by a comprehensive psychiatric evaluation. The results 
from a two-stage diagnostic procedure would look like Table 4.5.

Table 4.5 Disease status by test results for a large sample from 
the population.

Disease Test Result

Status Positive Negative Total

Presence a b a + b
Absence c d c + d

Total a + c b + d a + b + c + d

Sensitivity is estimated by a/(a + b), specifi city is estimated by d/(c + d), predicted 
value positive is estimated by a/(a + c), and predicted value negative is estimated by 
d/(b + d). Similarly, the false positive rate is estimated by c/(c + d) and the false nega-
tive rate by b/(a + b).

For many diseases of interest, the prevalence is so low that there would be few 
persons with the disease in the sample. This means that the estimates of sensitivity and 
the predicted value positive would be problematic. Therefore, some alternate sample 
design must be used to estimate these conditional probabilities. When a large number 
of people are screened by a test in a community and a sample of persons with positive 
test results and those with negative test results are subjected to clinical evaluations, the 
predicted value positive and the predicted value negative can be directly calculated from 
the results of clinical evaluations, and sensitivity and specifi city can be indirectly esti-
mated. Conversely, when sensitivity and specifi city are directly estimated by applying 
the test to persons with the disease and persons without the disease in the clinic setting, 
the predicted value positive and the predicted value negative can be indirectly estimated 
if the prevalence rate of disease is known. These indirect estimation procedures are 
explained in the next section.
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4.3.3   Receiver Operating Characteristic Plot

In evaluating a diagnostic test for a certain disease, we need to consider relative impor-
tance of sensitivity and specifi city. For incidence, if the disease in question is likely to 
lead to death and the preferred treatment has few side effects, then it will be more 
important to make sensitivity as large as possible. On the other hand, if the disease is 
not too serious and the known treatment has considerable side effects, then more weight 
might be given to specifi city. The cost of the treatment given to those with positive test 
results could also come into consideration. In many situations, we need to consider both 
sensitivity and specifi city. But sensitivity and specifi city are relative to how we defi ne 
the status of disease. Different cut-off points in the defi nition of the condition would 
give different results.

Here we illustrate how the sensitivity and specifi city of a test change with respect to 
the cut-off point chosen for indicating a positive test result. Let us consider the case 
of using the serum calcium level as a test for detect hyperparathyroidism (Lundgren 
et al. 1997). The following data show the level of serum calcium and the status 
of hyperparathyroidism:

  Serum Calcium Levels mg/dL

  8  mg/dL 9  mg/dL 10  mg/dL 11  mg/dL 12  mg/dL Total

Disease Negative 40  7 4  2  1 54
Status Positive  2  3 5  8 17 35

 Total 42 10 9 10 18 89

If we consider 9  mg/dL or more as positive test result, the data can be summarized as 
follows:

 Serum Calcium Levels mg/dL

  9  mg/dL or more Less than 9  mg/dL Total

Disease Negative 14 40 54
Status Positive 33  2 35

 Total 47 42 89

From this summary, the estimated sensitivity is 0.94 (= 33/35) and the specifi city is 0.74 
(= 40/54). As the cut-point changes, the sensitivity and specifi city of the diagnostic test 
also change. As we increase the cut-point for serum calcium levels, the sensitivity of 
the test decreases and the specifi city increases as shown here.

Cut-Point Sensitivity Specifi city

<8  mg/dL | 8  mg/dL 35 / 35 = 1.00  0 / 54 = 0.00
 8  mg/dL | 9  mg/dL 33 / 35 = 0.94 40 / 54 = 0.74
 9  mg/dL | 10  mg/dL 30 / 35 = 0.86 47 / 54 = 0.87
10  mg/dL | 11  mg/dL 25 / 35 = 0.71 51 / 54 = 0.94
11  mg/dL | 12  mg/dL 17 / 35 = 0.48 53 / 54 = 0.98
12  mg/dL | >12  mg/dL  0 / 35 = 0.00 54 / 54 = 1.00
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We generally use the Receiver Operating Characteristic (ROC) plot to examine the 
tradeoff between sensitivity and specifi city. This is a plot of sensitivity versus 1 − speci-
fi city. Figure 4.1 shows the ROC plot for the preceding data. By looking at the curve 
relative to a 45-degree line, we notice that as the curve extends farther away from the 
line, the accuracy of the diagnostic test improves, and as the curve draws nearer to the 
45-degree line, the diagnostic test’s accuracy becomes worse. Therefore, we can con-
sider the area under the ROC curve as a measure of a diagnostic test’s discrimination 
or the test’s ability to correctly classify individuals with and without the disease. An 
excellent test would have an area under the curve of nearly 1.00, while a poor test would 
have an area under the curve of nearly 0.50.

4.4   Bayes’ Theorem
We wish to fi nd the predicted value positive and predicted value negative using the 
known values for disease prevalence, sensitivity, and specifi city. Let us focus on pre-
dicted value positive — that is, Pr{D+ | T +} — and see how it can be expressed in terms 
of sensitivity, Pr{T + | D+}, specifi city, Pr{T − | D−}, and disease prevalence, Pr{D+}.

We begin with the defi nition of the predicted value positive:
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Applying Equation (4.6), Pr{A ∩ B} = Pr{B | A}  ⋅  Pr{A}, the probability of the intersec-
tion of D+ and T + can also be expressed as

 Pr{D+ ∩ T +} = Pr{T + | D+} Pr{D+}.

On substitution of this expression for the probability of the intersection in the defi nition 
of the predicted value positive, we have
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Figure 4.1 The receiver 
operating characteristic 
plot for serum calcium 
values and 
hyperparathyroidism.
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(4.7)

which shows that predicted value positive can be obtained by dividing the product of 
sensitivity and prevalence by Pr{T +}.

Applying Equation (4.1), Pr{T +} can be expressed as the sum of the probabilities of 
the intersection of T + with the two possible outcomes of the disease status: D+ and D−; 
that is,

 Pr{T +} = Pr{T + ∩ D+} + Pr{T + ∩ D−}.

Applying Equation (4.5) to the two probabilities of intersections, we now have

 Pr{T +} = Pr{T + | D+}Pr{D+} + Pr{T + | D−}Pr{D−}.

Substituting this expression in Equation (4.7), the predictive value positive is
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(4.8)

Note that the numerator and the fi rst component of the denominator is the product of 
sensitivity and disease prevalence. The second component of the denominator is the 
product of (1 − specifi city) and (1 − disease prevalence). Predicted value negative follows 
immediately, and it is
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These two formulas are special cases of the theorem discovered by Reverend Thomas 
Bayes (1702–1761). In terms of the events A and Bi, Bayes’ theorem is
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Example 4.6

Consider the use of the count of blood vessels in breast tumors. A high density of 
blood vessels indicates a patient who is at high risk of having cancer spread to other 
organs (Weidner et al. 1992). Use of the count of blood vessels appears to be worth-
while in women with very small tumors and no lymph node involvement — the 
node-negative case. Suppose that during the development stage of this procedure, its 
sensitivity was estimated to be 0.85; that is, of the women who had cancer spread to 
other organs, 85 percent of them had a high count of blood vessels in their breast 
tumors. The specifi city of the test was estimated to be 0.90; that is, of the women 
for whom there was no spread of cancer, 90 percent of them had a low count of blood 
vessels in their tumors. Assume that the prevalence of cancers spread from breast 
cancers is 0.02. Given these assumed values, what is the predicted value positive 
(PVP) of counting the number of blood vessels in the small tumors?
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Example 4.7

Let us recast the question in Example 4.6 using frequencies instead of probabilities. 
Suppose that 20 out of every 1000 women with breast tumors have cancer spread to 
other organs (the prevalence of cancer spread is 0.02). Of these 20 women with 
cancer spread, 17 will have a high count of blood vessels (sensitivity of the test was 
estimated to be 0.85). Of the remaining 980 women without cancer spread, 882 will 
have a low count of blood vessels in their tumors (specifi city of the test was estimated 
to be 0.90). Then what percent of women with a high density of blood vessels do 
actually have cancer spread (predicted value positive)?

This question can be answered easily without using the Bayes’ formula. Looking 
at the frequencies just stated, the total number of women with high-density blood 
vessels is the sum of 17 from those with cancer spread and 98 (980 minus 882) from 
those without cancer spread. The sum is 115. Of these, 17 saw their cancers spread. 
Therefore, the predicted value positive is 0.148 (= 17/115), which is the same value 
obtained by the formula in Example 4.5. You can see it more clearly in the following 
2 by 2 table:

Using Equation (4.8),

Pr
Pr Pr

Pr Pr Pr Pr
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T D D

T D D T D D
+ +

+ + +
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the answer is
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Using the preceding assumed values for sensitivity, specifi city, and prevalence, 
there is approximately a 15 percent chance of having cancer spread from a small 
breast tumor given a high density of blood vessels in the tumor. This value may be 
too low for the test to be useful. If the true values for specifi city or prevalence are 
higher than the values just assumed, then the PVP will also be higher. For example, 
if the prevalence is 0.04 instead of 0.02, then the PVP is 0.262 instead of 0.148.

  Blood Vessel Count

Cancer Spread High Low Total

Yes (17)**   3 (20)*
No  98 (882)*** 980

Total 115 885 1000

*Prevalence rate of 0.02 Predicted value positive: 17/115 = 0.148
**Sensitivity of 0.85 Predicted value negative: 882/885 = 0.997
***Specifi city of 0.90

This example demonstrates that Bayes’ theorem is to enhance and expedite our 
reasoning rather than to be memorized blindly.
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4.5   Probability in Sampling
Sampling means selecting a few units from all the possible observational units in the 
population. To infer from the sample to the population, we need to know the probability 
of selection. A sample selected with unknown probability of selection cannot be linked 
appropriately to the population from which the sample was drawn. A sample drawn with 
known probability of selection is called a probability sample. We examine the simplest 
probability sample that assigns an equal probability of selection to every unit of obser-
vation in the population. More complex sample selection designs will be discussed in 
Chapter 6.

4.5.1   Sampling with Replacement

A sample that allows duplicate selections is called a sample with replacement. Allow-
ance of duplicate selection implies that sample selections are independent — each selec-
tion is not dependent on previous selections. To understand the probability of selection 
in a sample with replacement, let us consider the case of selecting three units from a 
population of four units (A, B, C, and D). There are 64 (= 43) ways of selecting such 
samples as listed in Table 4.6.

Table 4.6 Possible samples of drawing 3 from (A, B, C and D) 
with replacement.

AAA ACA BAA BCA* CAA CCA DAA DCA*
AAB ACB* BAB BCB CAB* CCB DAB* DCB*
AAC ACC BAC* BCC CAC CCC DAC* DCC
AAD ACD* BAC* BCD* CAD* CCD DAD DCD
ABA ADA BBA BDA* CBA* CDA* DBA* DDA
ABB ADB* BBB BDB CBB CDB* DBB DDB
ABC* ADC* BBC BDC* CBC CDC DBC* DDC
ABD* ADD BBD BDD CBD* CDD DBD DDD

*Samples without duplications

Probability in Sampling  87

Since selections are independent, the probability of selecting each of these 
samples is 1/64 (= [1/4]3). As shown in the table, the total number of samples without 
duplications is 24(4 × 3 × 2); that is, there are 4 ways to fi ll the fi rst position of 
the sample, 3 ways to the second position, and 2 ways to fi ll the third position. The 
probability of selection with replacement samples that do not contain duplication is 
0.375 (= 24/64). The probability of obtaining samples with duplications is 0.625 (= 1 
− 0.375).

When selecting n units from N units in the population, there are Nn possible samples 
with replacement. Of these, N(N − 1)  .  .  .  (N − n + 1) samples contain no duplications. 
Then the probability of obtaining with replacement samples that contain duplica -
tions is

 
Pr .duplications

N N N n

N n
( ) = − −( ) − +( )

1
1 1�

 
(4.9)
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Example 4.8

How likely is it that at least two students in a class of 23 will share the same birthday? 
The chance may be better than we might expect. If we assume that the birthdays of 
23 students are independent and that each day out of 365 days in a year, eliminating 
February 29, is equally likely to be a student’s birthday, the situation is equivalent 
to selection of a random sample of 23 days from the 365 days using the sampling 
with replacement procedure. The probability can be calculated using Equation (4.9) 
— that is,

1
365 364 343

365
0 507

23
−

( ) ( )
=�

. .

The calculation may require the use of a computer (the SAS program is available on 
the website). If the size of class increases to 50, the probability increases to 0.97.

Let us consider the probability of selecting a particular unit. In the list of samples in 
Table 4.6, unit A appears 16 times in the fi rst position of the sample, 16 times in the 
second position, and 16 times in the third position. Then the probability of A being 
selected into the sample is [3(16) / 43] = (48 / 64) = (3 / 4). Thus, in general, the selec-
tion probability of a unit is n / N.

4.5.2   Sampling without Replacement

A sample that does not allow duplications is called a sample without replacement. In 
sampling without replacement, a selection of a unit is no longer independent because 
the selection is conditional on the unit being not selected in a previous draw. In this 
sampling, once a subject is selected, it is removed from the population, and the number 
of units in the population is decreased by one unit. Does this decrease in the denomina-
tor as a unit is selected invalidate the equal probability of selection for subsequent units? 
The following example addresses this.

Suppose that a class has 30 students, and a random sample of 5 students is to be 
selected without allowing duplicate selections. The probability of selection for the fi rst 
draw will be 1 / 30, and that for the student selected second will be 1 / 29, since one 
student was already selected. This line of thinking seems to suggest that random sam-
pling without replacement is not an equal probability sampling model. Is anything 
wrong in our thinking?

We have to realize that the selection probability of 1 / 29 for the second draw is a 
conditional probability. The student selected in the second draw is available for selection 
only if the student were not selected in the fi rst draw. The probability of not being 
selected in the fi rst draw is 29 / 30. Thus, the event of being selected during the second 
draw is the intersection of the events of not being selected during the fi rst draw and 
being selected during the second draw. Applying {Pr{A ∩ B} = Pr{A | B} ⋅ Pr{B}, the 
probability of this intersection is (1 / 29) (29 / 30), which yields 1 / 30. The same argu-
ment can be made for subsequent draws, as shown in Table 4.7.
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The demonstration in Table 4.7 indicates that the probability of being selected in any 
draw is 1 / 30, and hence the equal probability of selection also holds for sampling 
without replacement. Now we can state that the probability for a particular student to 
be included in the sample will be 5 / 30, since the student can be drawn in any one of 
the fi ve draws. Thus, in general, the selection probability of a unit without replacement 
is n / N, the same as in the case of replacement sampling.

A sampling procedure that assigns n / N chance of being selected into the sample to 
every unit in the population is called simple random sampling, regardless of whether 
sampling is done with or without replacement. We usually use sampling without replace-
ment. The distinction between sampling with and without replacement is moot when 
selecting a sample from large populations because the chance of selecting a unit more 
than once would be very small. The statement that each of the possible samples is 
equally likely implies that each unit in the population has the same probability of being 
included in the sample as demonstrated in this and the previous section.

4.6   Estimating Probabilities by Simulation
Our approach to fi nding probabilities has been to enumerate all possible outcomes and 
to base the calculation of probabilities on this enumeration. This approach works well 
with simple phenomena, but it is diffi cult to use with complex events. Another way of 
assessing probabilities is to simulate the random phenomenon by using repeated sam-
pling. With the wide availability of microcomputers, the simulation approach has become 
a powerful tool to approach many statistical problems.

Table 4.7 Calculation of inclusion probabilities in drawing an SRS of 5 from 30 without replacement.

 Conditional Probability Probability Not Selected Product of
Order of Draw (1) in Previous Draws (2) (1) & (2)

1 1/30 1 1/30
2 1/29 29/30 1/30
3 1/28 (29/30)(28/29) = 28/30 1/30
4 1/27 (29/30)(28/29)(27/28) = 27/30 1/30
5 1/26 (29/30)(28/29)(27/28)(26/27) = 26/30 1/30

Example 4.9

Let us reconsider the question posed in Example 4.8. In a class of 30, what will be 
the chance of fi nding at least 2 students sharing the same birthday? It should be 
higher than the 50 percent that we found among 23 students in Example 4.8. Let us 
fi nd an answer by simulation. We need to make the same assumptions as in Example 
4.8. Selecting 30 days from 365 days using the sampling procedure, we can use the 
random number table in Appendix B. For example, we can read 30 three-digit 
numbers between 1 and 365 from the table and check to see if any duplicate numbers 
are selected. We can repeat the operation many times and see how many of the trials 
produced duplicates. Since this manual simulation would require considerable time, 
we can use a computer program (see Program Note 4.1 on the website). The results 
of 10 simulations are shown in Table 4.8.
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Eight of these 10 trials have duplicates, which suggests that there is an 80 percent 
probability of fi nding at least one common birthday among 30 students. Not 
shown are the results of 10 additional trials in which 6 of the 10 had duplicates. 
Combining these two sets of 10 trials, the probability of fi nding common birthdays 
among 30 students is estimated to be 70 percent (= [8 + 6] / 20). Using

Pr duplications
N N N n

N n
( ) = −

−( ) − +( )
1

1 1�
 we get 70.6 percent. Using 20 re- 

plicates is usually not enough to have a lot of confi dence in the estimate; we usually 
would like to have at least hundreds of replicates.

Table 4.8 Simulation to fi nd the probability of common birthdays among 30 students.

 Simulations

Student 1 2* 3* 4* 5* 6* 7 8* 9* 10*

 1 4 2 3 44 8 3 7 5 8 12
 2 10 30 10* 52 21 4 47 7 18 19
 3 21 46 10* 72 24 22 48 7 27 31
 4 47 67 15 85 76 23 54 18 45 48
 5 48 97 23 106 91 27 80 23 50 65
 6 64 100 26 116 100 42 82 37 66 80
 7 65 105 35 120 113 57 93 54 90 82
 8 78 106 41 123 124 64 119 59 91 103
 9 93 106 53 132 143* 72 123 64 94 116
10 95 109 73 143 143* 104 137 89 97 169
11 101 133 78 151 147 107 138 109 104 175
12 115 140 86 180 150 119 140 120 132 182
13 154 145 87 181 155 132 162 138 149 193
14 165 158 163 188 166 152 179 143 153 195
15 167 191 166 208 172 167 185 173 180 208
16 185 209* 176 231 200 210 191 201 187 217
17 193 209* 186 248 205 229 199 209* 188 247
18 220 220 200 249 241 230 203 209* 189 249
19 232 223 209 255 243 233 213 215 193 261
20 242 229 220 259* 248 236 232 223 196 262*
21 257 241 251 259* 250 253 238 224 242 262*
22 282 249 260 267 263 307 252 231 250 305
23 284 268 264 270 281 321 259 239 324 307
24 285 286 265 285 283 326 267 259 333 309
25 288 317 283 286 307 327 272 274 338 321
26 299 323 295 288 310 334 287 335 354 326
27 309 335* 297 296 311 336 295 342 360* 328
28 346 335* 300 310 326 343* 308 352 360* 330
29 347 336 352 327 335 343* 313 357 360* 347
30 357 356 355 352 336 362 363 358 360* 356

Let us consider another example.

Example 4.10

Population and family planning program planners in Asian countries have been 
dealing with the effects of the preference for a son on population growth. If all 
couples continue to have children until they have two sons, what is the average 
number of children they would have? To build a probability model for this situation, 
we assume that genders of successive children are independent and the chance of a 
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4.7   Probability and the Life Table
Perhaps the oldest probability model that has been applied to a problem related to health 
is the life table. The basic idea was conceived by John Graunt (1620–1674), and the fi rst 
life table, published in 1693, was constructed by Edmund Halley (1656–1742). Later 
Daniel Bernoulli (1700–1782) extended the model to determine how many years would 
be added to the average life span if smallpox were eliminated as a cause of death. Now 
the life table is used in a variety of fi elds — for example, in life insurance calculations, 
in clinical research, and in the analysis of processes involving attrition, aging and 
wearing out of industrial products.

We are presenting the life table here to show an additional application of the probabil-
ity rules described above. Table 4.10 is the abridged life table for the total U.S. popula-
tion in 2002. It is based on information from all death certifi cates fi led in the 50 states 
and the District of Columbia. It is called an abridged life table because it uses age-
groupings instead of single years of age. If single years of age are used, it is called a 
complete life table. Prior to 1997, a complete life table was construed only for a census 
year and for all off-census years abridged life tables were constructed. Beginning with 
1997 mortality data, a complete life table was constructed every year, and abridged 
tables are derived from the complete tables. Previously, the annual life tables were closed 
at age 85, but they have been extended to age 100 based on old-age mortality data from 
the Medicare program. Other types of life tables are available from the National Center 
for Health Statistics. A brief history and sources for life tables for the United States can 
be found in Appendix C.

son is 1 / 2. To simulate the number of children a couple has, we select single digits 
from the random number table, considering odd numbers as boys and even numbers 
as girls. Random numbers are read until the second odd number is encountered, and 
the number of values required to obtain two odd values is noted. Table 4.9 shows the 
results for 20 trials (couples).

The average number of children based on this very small simulation is estimated 
to be 4.25 (= 85 / 20). Additional trials would provide an estimate closer to the true 
value of four children.

Table 4.9 Simulation of child-bearing until the second son is born.

Trial Digits No. of Digits Trial Digits No. of Digits

 1 19 2 11 37 2
 2 2239 4 12 367 3
 3 503 3 13 6471 4
 4 4057 4 14 509 3
 5 56287 5 15 940001 6
 6 13 2 16 927 3
 7 96409 5 17 277 3
 8 125 3 18 544264882425 12
 9 31 2 19 3629 4
10 425448285 9 20 045467 6
   Total number of digits 85
   Average = 85/20 = 4.25
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One use of the life table is to summarize the life experience of the population. A 
direct way of creating a life table is to follow a large cohort — say, 100,000 infants born 
on the same day — until the last member of this cohort dies. For each person the exact 
length of life can be obtained by counting the number of days elapsed from the date of 
birth. This yields 100,000 observations of the length of life. The random variable is the 
length of life in years or even in days. We can display the distribution of this random 
variable and calculate the mean, the median, the fi rst and third quartiles, and the 
minimum and maximum. Since most people die at older ages, we expect that the dis-
tribution is skewed to the left, and hence the median length of life is larger than the 
mean length of life. The mean length of life is the life expectancy. We can tabulate the 
data using the age intervals 0–1, 1–5, 5–10, 10–15,  .  .  .  , 95–100, and 100 or over. All 
the intervals are the same length — fi ve years — except for the fi rst two and the last 
interval. The fi rst interval is of a special interest, since quite a few infants die within 
it. From this tabulation, we can also calculate the relative frequency distribution by 
dividing the frequencies by 100,000. These relative frequencies give the probability of 
dying in each age interval. This probability distribution can be used to answer many 
practical questions regarding life expectancy. For instance, what is a 20-year-old 
person’s probability of surviving to the retirement age of 65?

However, acquiring such data poses a problem. It would take more than 100 years 
to collect it. Moreover, information obtained from such data may be of some historical 
interest but not useful in answering current life expectancy questions, since current life 
expectancy may be different from that of earlier times. To solve this problem, we have 
to fi nd ways to use current mortality information to construct a life table. The logical 

Table 4.10 Abridged life table for the total U.S. population, 2002.

     Total Number
 Probability of Number Number Dying Person-Years of Person-Years Expectation
 Dying Between Surviving to Between Ages Lived Between Lived Above of Life at
 Ages x and x + n Age x x and x + n Ages x and x + n Age x Age x

Age nqx lx ndx nLx Tx ex

 0–1  ....... 0.006971 100,000 697 99,389 7,725,787 77.3
 1–5  ....... 0.001238 99,303 123 396,921 7,626,399 76.8
 5–10  ..... 0.000759 99,180 75 495,706 7,229,477 72.9
10–15  ..... 0.000980 99,105 97 495,311 6,733,771 67.9
15–20  ..... 0.003386 99,008 335 494,345 6,238,460 63.0
20–25  ..... 0.004747 98,672 468 492,189 5,744,116 58.2
25–30  ..... 0.004722 98,204 464 489,871 5,251,927 53.5
30–35  ..... 0.005572 97,740 545 487,395 4,762,056 48.7
35–40  ..... 0.007996 97,196 777 484,164 4,274,661 44.0
40–45  ..... 0.012066 96,419 1,163 479,362 3,790,497 39.3
45–50  ..... 0.017765 95,255 1,692 472,292 3,311,135 34.8
50–55  ..... 0.025380 93,563 2,375 462,186 2,838,843 30.3
55–60  ..... 0.038135 91,188 3,478 447,838 2,376,658 26.1
60–65  ..... 0.058187 87,711 5,104 426,603 1,928,820 22.0
65–70  ..... 0.088029 82,607 7,272 395,866 1,502,217 18.2
70–75  ..... 0.133076 75,335 10,025 352,791 1,106,350 14.7
75–80  ..... 0.201067 65,310 13,132 294,954 753,560 11.5
80–85  ..... 0.304230 52,178 15,874 222,013 458,606 8.8
85–90  ..... 0.447667 36,304 16,252 140,041 236,593 6.5
90–95  ..... 0.599618 20,052 12,024 67,822 96,552 4.8
95–100  ... 0.739020 8028 5933 23,056 28,730 3.6
100+ ....... 1.000000 2095 2095 5675 5675 2.7

Source: Arias, 2004
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current mortality data for this purpose are the age-specifi c death rates. For the time 
being, we assume that age-specifi c death rates measure the probability of dying in each 
age interval. Note that these rates are conditional probabilities. The death rate for the 
5- to 10-year-old age group is computed on the condition that its members survived the 
previous age intervals.

As presented in Chapter 3, the age-specifi c death rate is calculated by dividing the 
number of deaths in a particular age group by the midyear population in that age group. 
This is not exactly a proportion, whereas a probability is. Therefore, the fi rst step in 
constructing a life table is to convert the age-specifi c death rates to the form of a prob-
ability. One possible conversion is based on the assumption that the deaths were occur-
ring evenly throughout the interval. Under this assumption, we expect that one-half of 
the deaths occurred during the fi rst half of the interval. Thus, the number of persons at 
the beginning of an interval is the sum of the midyear population and one-half of the 
deaths that occurred during the interval. Then the conditional probability of dying 
during the interval is the number of deaths divided by the number of persons at the 
beginning of the interval. Actual conversions use more complicated procedures for dif-
ferent age groups, but we are not concerned about these details.

4.7.1   The First Four Columns in the Life Table

With this background, we are now ready to examine Table 4.10. The fi rst column shows 
the age intervals between two exact ages. For instance, 5–10 indicates the fi ve-year 
interval between the fi fth and tenth birthdays. This age grouping is slightly different 
from those of under 5, 5–9, 10–14, and so on used in the Census publications. In the 
life table, age is considered a continuous variable, whereas in the Census, counting of 
people by age (ignoring the fractional year) is emphasized.

The second column shows the proportion of the persons alive at the beginning of the 
interval who will die before reaching the end of the interval. It is labeled as nqx, where 
the fi rst subscript on the left denotes the length of the interval and the second subscript 
on the right denotes the exact age at the beginning of the interval. The fi rst entry in the 
second column, 1q0, is 0.006971, which is the probability of newborn infants dying 
during the fi rst year of life. The second entry is 4q1, which equals 0.001238. It is the 
conditional probability of dying during the interval between ages 1 and 5, provided the 
child survived the fi rst year of life. The rest of the entries in this column are conditional 
probabilities of dying in a given interval for those who survived the preceding intervals. 
These conditional probabilities are estimated from the current age-specifi c death rates. 
Note that the last entry of column 2 is 1.000000, indicating everybody dies sometime 
after age 100.

Thus, we have a series of conditional probabilities of dying. Given these conditional 
probabilities of dying, we can also fi nd the conditional probabilities of surviving. The 
probability of surviving the fi rst year of life will be

 (1 − 1q0) = 1 − 0.006971 = 0.993029.

Likewise, the conditional probability of surviving the interval between exact ages 1 and 
5, provided infants had survived the fi rst year of life will be

 (1 − 4q1) = 1 − 0.001238 = 0.998762.
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Surviving the fi rst fi ve years of life is the intersection of surviving the 0–1 interval 
and the 1–5 interval. The probability of this intersection can be obtained as the product 
of the probability of surviving the 0–1 interval and the conditional probability of surviv-
ing the 1–5 interval given survival during the 0–1 interval — that is,

 Pr{surviving the intervals 0–1 and 1–5} = (1 − 1q0) (1 − 4q1)

 = (1 − 0.006971) (1 − 0.001238) = (0.993029) (0.998762) = 0.991800.

Similarly, the probability of surviving the fi rst 10 years of life, the fi rst three intervals, 
will be

 (1 − 1q0) (1 − 4q1) (1 − 5q5).

Using this approach, we can calculate the survival probabilities from birth to the begin-
ning of any subsequent age intervals. These survival probabilities are refl ected in the 
third column, the number alive, lx, at the beginning of the interval which begins at x 
years of age, out of a cohort of 100,000. Note that the entries in this column may differ 
slightly from the product of the survival probabilities and 100,000 because, although 
only four digits to the right of the decimal point are shown in the second column, more 
digits are used in the calculations. The fi rst entry in this column is l0, called the radix, 
is the size of the birth cohort. The second entry, the number alive at the beginning of 
the interval beginning at 1 year of age, l1, is found by taking the product of the number 
alive at the beginning of the previous interval and the probability of surviving that 
interval — that is,

 l1 = l0 (1 − 1q0) = l0 − (l0 − 1q0) = l0 − 1d0.

This quantity, l1, is equivalent to taking the number alive at the beginning of the previ-
ous period minus the number that died during that period, 1d0. The numbers that died 
during each interval are shown in the fourth column, which is labeled as ndx.

The number who died during the four-year age interval from 1 to 5 is 4d1. This is 
found by taking the product of the number alive at the beginning of this interval, l1, and 
the probability of dying during the interval, 4q1 — that is, 4d1 = l1(4q1). The number alive 
at the beginning of the interval of 5 to 10 years of age, l5, can be found by subtracting 
the number who died during the previous age interval, 4d1, from the number alive at the 
beginning of the previous interval, l1 — that is, l5 = l1 − 4d1. Repeating this operation, 
the rest of the entries in the third and fourth columns can be obtained. The fourth column 
can also be obtained directly from the third column. For example,

 1d0 = l0 − l1, 4d1 = l1 − l5, etc.

Note that the last entry of the third column is the same as the last entry in the 
fourth column because all the survivors at age 100 will die subsequently. Note further 
that the lx value in each row is a cumulative total of ndx values in that and all 
subsequent rows.

Dividing the entries in the third and fourth columns by 100,000, we obtain the prob-
abilities of surviving from birth to the beginning of the current interval and dying during 
the current interval, respectively. Note that the entries in the fourth column sum to 
100,000, meaning that the probability of dying sums to one. As we expected, the dis-
tribution is negatively skewed, with the larger probabilities of dying at older ages.
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4.7.2   Some Uses of the Life Table

Before looking at expected values in the life table, we wish to show how the fi rst four 
columns, particularly the third column, can be used to answer some questions regarding 
life chances.

Example 4.11

What is the probability of surviving from one age to a subsequent age, say from age 
5 to age 20? This is a conditional probability, conditional on the survival to age 5. 
The intersection of the events of surviving to age 20 and surviving to age 5 is sur-
viving to age 20. Thus, the probability of this intersection is the probability of sur-
viving from birth to age 20. This is the number alive at the beginning of the 20–25 
interval divided by the number alive at the beginning — that is, l20/l0. The probability 
of surviving from birth to age 5 is l5/l0. Therefore, the conditional survival probability 
from age 5 to age 20 is found by dividing the probability of the intersection by the 
probability of surviving to age 5 — that is,

l

l

l

l

l

l
20

0

5

0

20

5

98672

99180
0 994878( ) ( ) = ( ) = = . .

The survival probabilities from any age to an older age can be calculated in a similar 
fashion.

Example 4.12

What is the probability of dying during the fi rst 5 years of life? This probability can 
be found by subtracting the probability of surviving the fi rst 5 years from 1 — that 
is,

1 1 1 1 1

1 0 99180 0 0820

1 0 4 1
1

0

5

1

5

0

− −( ) −( ) = − ( )( ) = −

= − =

q q
l
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l

l

l

l
.

. .

This is simply 1 minus the ratio of the number alive at the beginning of the fi nal 
interval of interest and 100,000.

We know the conditional probability of dying in any single interval. However, we 
may be interested in the probability of dying during a period formed by the fi rst two or 
more consecutive intervals.

Example 4.13

A similar question relates to the probability of dying during a period formed by two 
or more consecutive intervals given that one had already survived several intervals. 
For example, what is the probability that a 30-year-old person will die between the 
ages of 50 and 60? This conditional probability is found by dividing the probability 
of the intersection of the event of dying between the ages of 50 and 60 and the event 
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of surviving until 30 by the probability of the event of surviving until 30 years of 
age. The intersection of dying between 50 and 60 and surviving until 30 is dying 
between 50 and 60. The probability of dying between 50 and 60 is the number of 
persons dying, l50 minus l60, divided by the total number, l0. The probability of sur-
viving until age 30 is simply l30 divided by l0. Therefore, the probability of dying 
between 50 and 60 given survival until 30 is

l l

l

l

l

l l

l
50 60

0

30

0

50 50

30

93563 87711

97740
0 059873

−( ) ( ) = − = − = . .

Example 4.14

Another slightly more complicated question concerns the joint survival of persons. 
Suppose that a 40-year-old person has a 5-year-old child. What will be the probability 
that both the parent and child survive 25 more years until the parent’s retirement? 
If we assume that the survival of the parent and that of the child are independent, 
we can calculate the desired probability by multiplying the individual survival prob-
abilities. Applying the rule for the probability of surviving from one age to a subse-
quent age from the fi rst question, this is

l

l

l

l
65

40

30

5

82607

96419

97740

99180
0 856750 0 985481 0( ) ⋅ ( ) = ⋅ = ⋅ =. . .. .844311

The probability that the parent will die but the child will survive during the 25 years 
is

1 1 0 856750 0 985481 0 14117065

40
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l
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The probability that the parent will survive but the child will die during the 25 years 
is

l

l

l

l
65

40

30

5

1 0 856750 1 0 985481 0 012439( ) ⋅ −( ) = ⋅ −( ) =. . . .

The probability that both the parent and the child will die during the 25 years is

1 1 1 0 856750 1 0 985481 0 00208065

40

30

5

−( ) ⋅ −( ) = −( ) ⋅ −( ) =l

l

l

l
. . . .

These four probabilities sum to 1 because those four events represent all the pos-
sible outcomes in considering the life and death of two persons.

4.7.3   Expected Values in the Life Table

The last three columns contain the information for various expected values in the life 
table. The fi fth column of the life table, denoted by nLx, shows the person-years lived 
during each interval. For instance, the fi rst entry in the fi fth column is 99,389, which is 
the total number of person-years of life contributed by 100,000 infants during the fi rst 
year of life. This value consists of 99,303 years contributed by the infants that survived 
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the full year. The remaining 86 (= 99389 − 99303) person-years came from 697 infants 
who died during the year. The value of 86 years is based on actual mortality data coupled 
with mathematical smoothing. It cannot be found from the fi rst four columns in the 
table. The value of 86 years is much less than 348.5 expected if the deaths had been 
distributed uniformly during the year. This value also suggests that most of the deaths 
occurred during the fi rst half of the interval. The second entry of the fi fth column is 
much larger than the fi rst entry, mainly refl ecting that the length of the second interval 
is greater than the length of the fi rst interval. Each person surviving this second interval 
contributed 4 person years of life.

The fi fth column is often labeled as the “stationary population in the age interval.” 
The label of stationary population is based on a model of the long-term process of birth 
and death. If we assume 100,000 infants are born every year for 100 years, with each 
birth cohort subject to the same probabilities of dying specifi ed in the second column 
of the life table, then we expect that there will be 100,000 people dying at the indicated 
ages every year. This means that the number of people in each age group will be the 
numbers shown in the fi fth column. This hypothetical population will maintain the same 
size, since the number of births is the same as the number of deaths and it also keeps 
the same age distribution. That is, the size and structure of population is invariant, and 
hence this is called a stationary population.

The sixth column of the life table, denoted by Tx, shows cumulative totals of nLx 
values starting from the last age interval. The Tx value in each interval indicates the 
number of person years remaining in that and all subsequent age intervals. For example, 
the T95 value of 28,730 is the sum of 5L95 (= 23056) and ∞L100 (= 5675).

The last column of the life table, denoted by ex, shows the life expectancies at various 
ages, which are calculated by ex = Tx/lx. The fi rst entry of the last column is the life 
expectancy for newborn infants, and all subsequent entries are conditional life expectan-
cies. Conditional life expectancies are more useful information than the expectancies 
fi gured for newborn infants. For instance, those who survived to age 100 are expected 
to live 2.7 years more (e100 = 2.7), the last entry of the last column, whereas newborn 
infants are expected to live 0.06 years beyond age 100 (T100 / l0 = 5675/100000 = 
0.06).

Example 4.15

Based on Tx values, more complicated conditional life expectancies can be calculated. 
For instance, suppose that a 30-year-old person was killed in an industrial accident 
and had been expected to retire at age 65 if still alive. For how many years of 
unearned income should that person’s heirs be compensated? The family may request 
a compensation for 35 years. However, based on the life table, the company argues 
for a smaller number of years. The total number of years of life remaining during 
the interval from 30 to 65 is T30 minus T65, and there are l30 persons remaining at age 
30 to live those years. Therefore, the average number of years of life remaining is 
found by

T T

l
30 65

30

4762056 1

97740
33 4

− = − =502217
. .
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Example 4.16

The notion of stationary population can be used to make certain inferences for popu-
lation planning and manpower planning. The birth rate of the stationary population 
can be obtained by dividing 100,000 by the total years of life lived by the stationary 
population, or

l

T
0

0

100000

7725787

1

77 6
0 013= = =

.
.

or 13 per 1000 population. The death rate should be the same. But note that the birth 
rate equals the reciprocal of the life expectancy at birth (1/e0). In other words, the 
birth rate (replacement rate) and death rate (attrition rate) are entirely determined 
by the life expectancy under the stationary population assumption.

4.7.4   Other Expected Values in the Life Table

The most widely used fi gures from the life table are life expectancies. These are average 
values. As discussed in Chapter 3, the mean value may not represent the distribution 
appropriately in some circumstances. Let us fi nd the median length of life at birth. To 
fi nd the median, the second quartile, we must fi nd the value such that 50 percent of the 
radix falls below it. By examining column 3 in the life table, we fi nd that 52,178 persons 
are alive at the beginning of the age interval 80–85, whereas only 36,304 are alive at 
the beginning of the interval 85–90. Since 50,000 is between 52,178 and 36,304, we 
know that the median is somewhere between 80 and 85 years of age. If we assume that 
the 15,874 deaths are uniformly distributed over this age interval, we can fi nd the median 
by interpolation. We add a proportion of the fi ve years, the length of the interval, to the 
age at the beginning of the interval, 80 years. The proportion is the ratio of the differ-
ence between 52,178 and 50,000 to the 15,304 deaths that occurred in the interval. The 
calculation is

 
median = + ⋅ −⎛

⎝⎜
⎞
⎠⎟

=80 5
52178 50000

15874
80 69. .

As expected, the mean is smaller than the median. Perhaps, it is more enlightening to 
know that one-half of a birth cohort will live to age 81 than to know that an average 
length of life is about 77 years.

The corresponding calculations for the fi rst and third quartiles are

 
Q1 70 5

75335 75000

10025
70 17= + ⋅ −⎛
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⎞
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Q3 85 5

36304 25000
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Conclusion
Probability has been defi ned as the relative frequency of an event in an infi nite number 
of trials or in a population. Its use has been demonstrated in a number of examples, and 
a number of rules for the calculation of probabilities have been presented. The use of 
probabilities and the rules for calculating probabilities have been applied to the life table, 
a basic tool in public health research.

Now that we have an understanding of probability, we shall examine particular prob-
ability distributions in the next chapter.

EXERCISES

4.1 Choose the most appropriate answer.
a. If you get 10 straight heads in tossing a fair coin, a tail is _________ on the 

next toss.
 ___ more likely
 ___ less likely
 ___ neither more likely nor less likely
b. In the U.S. life table, the distribution of the length of life (or age at death) 

is ___.
 ___ skewed to the left
 ___ skewed to the right
 ___ symmetric
c. A test with high sensitivity is very good at _________.
 ___ screening out patients who do not have the disease.
 ___ detecting patients with the disease.
 ___ determining the probability of the disease.
d. In the U.S. life table the life expectancy (mean) is _________ the median 

length of life.
 ___ the same as
 ___ greater than
 ___ less than
e. 4q1 is called a _________ because an infant cannot die in this interval unless 

it survived the fi rst year of life.
 ___ personal probability
 ___ marginal probability
 ___ conditional probability
f. In the life table, the mean length of life for those who died during ages 0–1 

is _________.
 ___ about 1/2 year
 ___ more than 1/2 year
 ___ less than 1/2 year

4.2 The following table gives estimates of the probabilities that a randomly chosen 
adult in the United States falls into each of six gender-by-education categories 
(based on relative frequencies from the NHANES II, NCHS 1982). The three 
education categories used are (1) less than 12 years, (2) high school graduate, 
and (3) more than high school graduation.

Exercises  99
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a. What is the estimate of the probability that an adult is a high school graduate 
(categories 2 and 3)?

b. What is the estimate of the probability that an adult is a female?
c. From the NHANES II data, it is also estimated that the probability that a 

female is taking a vitamin supplement is 0.426. What is the estimate of the 
probability that the adult is a female and taking a vitamin supplement?

d. From the NHANES II, it is also estimated that the probability of adults 
taking a vitamin supplement is 0.372. What is the estimate of the probability 
that a male is taking a vitamin supplement?

4.3 Suppose that the failure rate (failing to detect smoke when smoke is present) 
for a brand of smoke detector is 1 in 2000. For safety, two of these smoke detec-
tors are installed in a laboratory.
a. What is the probability that smoke is not detected in the laboratory when 

smoke is present in the laboratory?
b. What is the probability that both detectors sound an alarm when smoke is 

present in the laboratory?
c. What is the probability that one of the detectors sounds the alarm and the 

other fails to sound the alarm when smoke is present in the laboratory?
4.4 Suppose that the probability of conception for a married woman in any month 

is 0.2. What is the probability of conception in two months?
4.5 A new contraceptive device is said to have only a 1 in 100 chance of failure. 

Assume that the probability of conception for a given month, without using any 
contraceptive, is 20 percent. What is the probability of having at least one 
unwanted pregnancy if a woman were to use this device for 10 years? [Hint: 
This would be the complement of the probability of avoiding pregnancy for 10 
years or 120 months. The probability of conception for any month with the use 
of the new contraceptive device would 0.2 * (1 − 0.99). This and related issues 
are examined by Keyfi tz 1971.]

4.6 In a community, 5500 adults were screened for hypertension by the use of 
a standard sphygmomanometer, and 640 were found to have a diastolic 
blood pressure of 90  mmHg or higher. A random sample of 100 adults 
from those with diastolic blood pressure of 90  mmHg or higher and 
another random sample of 100 adults from those with blood pressure less than 
90  mmHg were subjected to more intensive clinical evaluation for hyperten-
sion, and 73 and 13 of the respective samples were confi rmed as being 
hypertensive.
a. What is an estimate of the probability that an adult having blood pressure 

greater than or equal to 90 at the initial screening will actually be hyperten-
sive (predicted value positive)?

b. What is an estimate of the probability that an adult having blood pressure 
less than 90 at the initial screening will not actually be hypertensive (pre-
dicted value negative)?

Categories of Education

Gender (1) (2) (3)
Female 0.166 0.194 0.164
Male 0.149 0.140 0.187
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c. What is an estimate of the probability that an adult in this community is 
truly hypertensive (prevalence rate of hypertension)?

d. What is an estimate of the probability that a hypertensive person will be 
found to have blood pressure greater than or equal to 90 at the initial screen-
ing (sensitivity)?

e. What is an estimate of the probability that a person without hypertension 
will have blood pressure less than 90 at the initial screening (specifi city)?

4.7 What is the average number of children per family if every couple were to have 
children until a son is born? Simulate using the random number table in Appen-
dix B or a random number generator in any statistical software.

4.8 Calculate the following probabilities from the 2002 U.S. Abridged Life Table.
a. What is the probability that a 35-year-old person will survive to retirement 

at age 65?
b. What is the probability that a 20-year-old person will die between ages 55 

and 65?
4.10 Calculate the following expected values from the 2002 U.S. Abridged Life 

Table.
a. How many years is a newborn expected to live before his fi fth birthday?
b. How many years is a 20-year-old person expected to live after retirement at 

age 65? Repeat the calculation for a 60-year-old person. How would you 
explain the difference?

4.11 Suppose that a couple wants to have children until they have a girl or until they 
have four children.
a. What is the probability that they have at least two boys?
b. What is the expected number of children?

4.12 The following are tallies of the fi rst digits of the 50 states’ populations in the 
2000 U.S. Census:

Digit 1 2 3 4 5 6 7 8 9 Total

Frequencies 14 6 4 7 6 5 3 3 2 50

a. Why do you think digit 1 appears most frequently and digit 9 least 
frequently?

b. Tabulate the fi rst digits of numerical data that appeared on the front page 
of today’s newspaper, and see whether your fi ndings conform to Benford’s 
law (Hill 1999) [Pr(fi rst signifi cant digit = d) = log10 (1 + 1 / d), d = 1, 
2,  .  .  .  9].

4.13 About 1 percent of women have breast cancer. A cancer screening method can 
detect 80 percent of genuine cancers with a false alarm rate of 10 percent. What 
is the probability that women producing a positive test result really have breast 
cancer?

4.14 Suppose that a factory hires 500 men at age 25 and 200 women at age 25 
each year. The factory maintains the fi xed number of workforce. From the 
2002 life tables, the following values are available: For men: l25 = 97746; l65 = 
78556; e25 = 51.0; e65 = 16.6. For women: l20 = 98922; l65 = 86680; e20 = 60.7; 
e65 = 19.5.
a. What would be the expected number of retirees at age 65?
b. What would be the expected number of total employees?
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