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The Scotsman William Playfair is credited with being the fi rst to publish graphics such 
as the bar chart, line graph, and pie charts that are commonly used in statistics today 
(Kennedy 1984). This chapter focuses on the summarization and display of data using 
the techniques Playfair fi rst published along with several other useful procedures. We 
will rely on both numerical and pictorial procedures to describe data. We use charts 
and other procedures because they may capture features in the data that are often over-
looked when using summary numerical measures alone. Although the utility of graphi-
cal methods has been well established and can be seen in all walks of life, the visual 
representation of data was not always common practice. According to Galvin Kennedy, 
the fi rst 50 volumes of the Journal of the Royal Statistical Society contain only 14 charts, 
with the fi rst one appearing in 1841.

3.1   Introduction to Descriptive Methods
The data we use in this section come from the Digitalis Investigation Group (DIG) trial 
(DIG 1997). The DIG trial was a multicenter trial with 302 clinical centers in the United 
States and Canada participating. (Its study design features will be discussed in a later 
chapter.) The purpose of the trial was to examine the safety and effi cacy of Digoxin in 
treating patients with congestive heart failure in sinus rhythm. Subjects were recruited 
from those who had heart failure with a left ventricular ejection fraction of 0.45 or less 
and with normal sinus rhythm. The primary endpoint in the trial was to evaluate the 
effects of Digoxin on mortality from any cause over a three- to fi ve-year period. Basic 
demographic and physiological data were recoded at the entry to the trial, and outcome 
related data were recorded during the course of the trial. The data presented in this 
chapter consists of baseline and outcome variables from 200 patients (100 on Digoxin 
treatment and 100 on placebo) randomly selected from the multicenter trial dataset.* 
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*This trial was conducted and supported by the National Heart, Lung, and Blood Institute in cooperation 

with the study investigators. The NHLBI has employed statistical methods to make components of the full 

datasets anonymous in order to provide selected data as a teaching resource. Therefore, the data are inap-

propriate for any publication purposes. The authors would like to thank the NHLBI, study investigators, and 

study participants for providing the data.
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22  Descriptive Methods

Table 3.1 Digoxin clinical trial data for 40 participants.

     Body Mass Serum Systolic Blood
ID Treatmenta Ageb Racec Sexd Indexe Creatininef Pressureg

4995 0 55 1 1 19.435 1.600 150
2312 0 78 2 1 22.503 2.682 104
 896 0 50 1 1 27.406 1.300 140
3103 0 60 1 1 29.867 1.091 140
 538 1 31 1 1 27.025 1.159 120
1426 0 70 1 1 19.040 1.250 150
4787 1 46 1 1 28.662 1.307 140
5663 0 59 2 1 27.406 1.705 152
1109 0 68 1 2 27.532 1.534 144
 666 0 65 1 1 28.058 2.000 120
2705 1 66 1 2 28.762 0.900 150
5668 0 74 1 1 29.024 1.227 116
 999 1 47 1 2 30.506 1.386 120
1653 1 63 1 1 28.399 1.100 105
 764 1 63 2 2 28.731 0.900 122
3640 0 79 1 1 18.957 2.239 150
1254 1 73 1 1 26.545 1.300 144
2217 1 65 1 1 23.739 1.614 170
4326 0 65 1 1 29.340 1.200 170
5750 1 76 1 1 39.837 1.455 140
6396 0 83 1 1 26.156 1.489 116
2289 0 76 1 1 30.586 1.700 130
1322 1 45 1 2 43.269 0.900 115
4554 1 58 1 2 28.192 1.352 130
6719 1 34 1 1 20.426 1.886 116
1954 1 77 1 1 26.545 1.307 140
5001 1 70 1 1 19.044 1.200 110
1882 0 50 1 1 25.712 1.034 140
5368 1 38 1 1 30.853 0.900 134
 787 0 58 2 2 27.369 0.909 100
4375 0 61 1 1 32.079 1.273 128
5753 1 75 1 1 37.590 1.300 138
6745 0 45 1 1 22.850 1.398 130
6646 0 61 1 1 27.718 1.659 128
5407 1 50 1 2 24.176 1.000 130
4181 0 44 2 2 26.370 1.148 124
3403 0 55 1 2 21.790 1.170 130
2439 1 49 1 1 15.204 1.307 140
4055 0 71 1 1 22.229 1.261 100
3641 0 64 1 1 21.228 0.900 130
aTreatment group (0 = on placebo; 1 = on Digoxin)
bAge in years
cRace (1 = White; 2 = Nonwhite)
dSex (1 = Male; 2 = Female)
eBody mass index (weight in kilograms/height in meters squared)
fSerum creatinine (mg/dL)
gSystolic blood pressure (mmHg)

We refer to this working dataset as DIG200 in this book. The DIG200 dataset is reduced 
to create a smaller dataset including 7 baseline variables from 40 patients referred to as 
DIG40. Table 3.1 displays the DIG40 dataset. Both data fi les are available on the supple-
mentary website.

3.2   Tabular and Graphical Presentation of Data
The one- and two-way frequency tables and several types of fi gures (line graphs, bar 
charts, histograms, stem-and-leaf plots, scatter plots, and box plots) that aid the descrip-
tion of data are introduced in this section.
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3.2.1   Frequency Tables

A one-way frequency table shows the results of the tabulation of observations at each 
level of a variable. In Table 3.2, we show one-way tabulations of sex and race for the 
40 patients shown in Table 3.1. Three quarters of the patients are males, and over 
87 percent of the patients are whites.

Table 3.2 Frequencies of sex and race for 40 patients in DIG40.

Sex Number of Patients Percentage Race Number of Patients Percentage

Male 30  75.0 White 35  87.5
Female 10  25.0 Nonwhite  5  12.5
Total 40 100.0 Total 40 100.0

Table 3.3 Frequency of age groups for 40 patients in DIG40.

Age Groups Number of Patients Percentage

Under 40  3  7.5
40–49  6  15.0
50–59  8  20.0
60–69 11  27.5
70–79 12  30.0

Total 40 100.0

Table 3.4 Cross-tabulation of body mass index and sex for 40 patients in DIG40 with 
column percentages in parentheses.

 Sex

Body Mass Index Male Female Total

Under 18.5 (underweight)  1 (3.3%)  0 (0.0%)  1 (2.5%)
18.5–24.9 (normal) 10 (33.3%)  2 (20.0%) 12 (30.0%)
25.0–29.9 (overweight) 14 (46.7%)  6 (60.0%) 20 (50.0%)
30.0 & over (obese)  5 (16.7%)  2 (20.0%)  7 (17.5%)

Total 30 10 40

The variables used in frequency tables may be nominal, ordinal, or continuous. When 
continuous variables are used in tables, their values are often grouped into categories. 
For example, age is often categorized into 10-year intervals. Table 3.3 shows the fre-
quencies of age groups for the 40 patients in Table 3.1. More than one half of the patients 
are 60 and over. Note that the sum of percents should add up to 100 percent, although 
a small allowance is made for rounding. It is also worth noting that the title of the table 
should contain suffi cient information to allow the reader to understand the table.

Two-way frequency tables, formed by the cross-tabulation of two variables, are 
usually more interesting than one-way tables because they show the relationship between 
the variables. Table 3.4 shows the relationship between sex and body mass index where 
BMI has been grouped into underweight (BMI < 18.5), normal (18.5 ≤ BMI < 25), 
overweight (25 ≤ BMI < 30), and obese (BMI ≥ 30). The body mass index is calculated 
as weight in kilograms divided by height in meters squared. There are higher percent-
ages of females in the overweight and obese categories than those found for males, but 
these calculations are based on very small sample sizes.
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In forming groups from continuous variables, we should not allow the data to guide 
us. We should use our knowledge of the subject matter, and not use the data, in deter-
mining the groupings. If we use the data to guide us, it is easy to obtain apparent dif-
ferences that are not real but only artifacts. When we encounter categories with no or 
few observations, we can reduce the number of categories by combining or collapsing 
these categories into the adjacent categories. For example, in Table 3.4 the number of 
obesity levels can be reduced to 3 by combining the underweight and normal categories. 
There is no need to subdivide the overweight category, even though one-half of observa-
tions are in this category. Computer packages can be used to categorize continuous 
variables (recoding) and to tabulate the data in one- or two-way tables (see Program 
Note 3.1 on the website).

There are several ways of displaying the data in a tabular format. In Tables 3.2, 3.3, 
and 3.4 we showed both numbers and percentages, but it is not necessary to show both 
in a summary table for presentation in journal articles. Table 3.5 presents basic patient 
characteristics for 200 patients from the DIG200 data set. Note that the total number 
(n) relevant to the percentages of each variable is presented at the top of the column and 
percentages alone are presented, leaving out the frequencies. The frequencies can be 
calculated from the percentages and the total number.

Table 3.5 Basic patient characteristics at baseline in the Digoxin clinical trial 
based on 200 patents in DIG200.

Characteristics  Percentage (n = 200)

Sex Male 73.0
 Female 27.0
Race White 86.5
 Nonwhite 13.5
Age Under 40  3.5
 40–49 11.5
 50–59 25.0
 60–69 33.0
 70 & over 26.0
Body mass index Underweight (< 18.5)  1.5
 Normal (18.5–24.9) 37.5
 Overweight (25–29.9) 42.5
 Obese (≥ 30) 18.5

Other data besides frequencies can be presented in a tabular format. For example, 
Table 3.6 shows the health expenditures of three nations as a percentage of gross domes-
tic products (GDP) over time (NCHS 2004, Table 115). Health expenditures as a 
percentage of GDP are increasing much more rapidly in the United States than either 
Canada or United Kingdom.

3.2.2   Line Graphs

A line graph can be used to show the value of a variable over time. The values of the 
variable are given on the vertical axis, and the horizontal axis is the time variable. Figure 
3.1 shows three line graphs for the data shown in Table 3.6. These line graphs also show 
the rapid increase in health expenditures in the United States compared with those of 
two other counties with national health plans. The trends are immediately clear in the 
line graphs, whereas one has to study Table 3.6 before the same trends are recognized.
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It is possible to give different impressions about the data by shortening or lengthening 
the horizontal and vertical axes or by including only a portion of an axis. In creating 
and studying line graphs, one must be aware of the scales used for horizontal and verti-
cal axes. For example, with numbers that are extremely variable over time, a logarithmic 
transformation (discussed later) of the variable on the vertical axis is frequently used 
to allow the line graph to fi t on a page.

Table 3.6 Health expenditures as a percentage of gross domestic 
product over time.

Year Canada United Kingdom United States

1960 5.4 3.9  5.1
1965 5.6 4.1  6.0
1970 7.0 4.5  7.0
1975 7.0 5.5  8.4
1980 7.1 5.6  8.8
1985 8.0 6.0 10.6
1990 9.0 6.0 12.0
1995 9.2 7.0 13.4
2000 9.2 7.3 13.3

Source: National Center for Health Statistics, 2004, Table 115

Figure 3.1 Line graph: 
Health expenditures as 
percentage of GDP for 
Canada, United 
Kingdom, and United 
States.

Example 3.1

It is well accepted that blood pressure varies from day to day or even minute to 
minute (Armitage and Rose 1966). We present the following data on systolic blood 
pressure measurements for three patients taken three times a day over a three-day 
period in two different ways in Figure 3.2:

 Day 1 Day 2 Day 3

Patient 8am 2pm 8pm 8am 2pm 8pm 8am 2pm 8pm

1 110 140 100 115 130 110 105 137 105
2 112 138 105 105 133 120 110 128 100
3 105 135 120 110 130 105 115 135 110
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In the top graph we show the change in a patient’s systolic blood pressure over the 
three time points for each day without connecting between days. From the line graph, 
we notice that the individual under study has peaks in his systolic blood pressure, 
and the peaks occur consistently at the same time point, giving us reason to believe 
that there may be a circadian rhythm in blood pressure.

Depending on the time of day when the blood pressure is measured, the patient’s 
hypertension status may be defi ned differently because most cutoff points for stages 
of hypertension are based on fi xed values that ignore the time of day. In the bottom 
graph the lines are connected between days, with the recognition that the time inter-
val between days is twice as large as the measurement intervals during the day. The 
general trend shown in the top graph remains, but the consistency between days is 
less evident. Another measurement at 2am could have established the consistency 
between days.

Figure 3.2 Plot of systolic blood pressure taken three times a day over a three-day period for 
three patients.
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Example 3.2

It is possible to represent different variables in the same fi gure, as Figure 3.3 shows. 
The right vertical axis is used for lead emissions and the left vertical axis for sulfur 
oxide emissions. Both pollutants are decreasing, but the decrease in lead emissions 
is quite dramatic, from approximately 200 × 103 metric tons in 1970 to only about 8 
× 103 metric tons in 1988. During this same period, sulfur oxide emissions decreased 
from about 20 × 106 metric tons to 21 × 106 metric tons. The decrease in the lead 
emissions is partially related to the use of unleaded gasoline, which was introduced 
during the 1970s.

Figure 3.3 Line graph of sulfur oxides and lead emissions in the United States.
Source: National Center for Health Statistics, 1991, Table 64

3.2.3   Bar Charts

A bar chart provides a picture of data that could also be reasonably displayed in tabular 
format. Bar charts can be created for nominal, ordinal, or continuous data, although 
they are most frequently used with nominal data. If used with continuous data, the chart 
could be called a histogram instead of a bar chart. The bar chart can show the number 
or proportion of people by levels of a nominal or ordinal variable.

Example 3.3

The actual enrollment of individuals in health maintenance organizations (HMOs) 
in the United States was 9.1 million in 1980, 33.0 million in 1990, and 80.9 million 
in 2000 (NCHS 2004, Table 134). This information is displayed in Figure 3.4 using 
a bar chart. The numbers of people enrolled in HMOs in the United States is shown 
by year (ordinal variable). This bar chart makes it very clear that there has been 
explosive growth in HMO enrollment. The actual numbers document this growth, 
but it is more dramatic in the visual presentation.

Ch003-P369492.indd   27 11/4/2006   11:17:27 AM
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In bar charts, the length of the bar shows the number of observations or the value of 
the variable of interest for each level of the nominal or ordinal variable. The widths of 
the bar are the same for all the levels of the nominal or ordinal variable, and the width 
has no meaning. The levels of the nominal or ordinal variable are usually separated by 
several spaces that make it easier to view the data. The bars are usually presented verti-
cally, although they could also be presented horizontally.

Bar charts can also be used to present more complicated data. The tabulated data in 
two- or three-way tables can be presented in bar chart format. For instance, the data in 
a 2 × 5 table (e.g., the status of diabetes — yes or no — by fi ve age groups) can be pre-
sented by fi ve bars with the length of each bar representing the proportion of people in 
the age group with diabetes, as shown in Figure 3.5.

When both variables in a two-way table have more than two levels each, we can use 
a segmented bar chart. Example 3.4 illustrates the presentation of data in a 3 × 4 table 
using a segmented bar chart. Data in a three-way table can be presented by a clustered 
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Figure 3.4 Bar chart of the number of persons (in millions) enrolled in Health Maintenance 
Organizations by year.
Source: National Center for Health Statistics (NCHS), 2004, Table 134

Figure 3.5 Bar chart 
showing proportion of 
people in each age 
group with diabetes, 
DIG200.
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bar chart. Example 3.5 shows a presentation of data in a 2 × 3 × 4 table using a clustered 
bar chart.

Example 3.4

To examine the relationship between obesity and age, DIG200 data are tabulated in 
a 3 × 4 table:

 Age Group (column percent in parentheses)

Obesity level Under 50 50–59 60–69 70 & over

Normal or underweight 11 (36.6) 22 (42.3) 26 (39.4) 19 (36.5)
 (BMI < 25)
Overweight (25 ≤ BMI < 30) 11 (36.6) 23 (44.2) 30 (45.5) 21 (40.4)
Obese (BMI ≥ 30)  8 (26.7)  7 (13.5) 10 (15.2) 12 (23.1)

Total 30 52 66 52

The data in this table are presented in Figure 3.6 using two types of segmented bar 
charts. The fi rst segmented bar chart is based on frequencies (top fi gure), and the 
second segmented bar chart is based on percentages (bottom fi gure). The top fi gure 
shows that nearly two-thirds of obese patients are in the 60 and over age groups. The 
bottom fi gure shows that the obesity is more prevalent in the under 50 age group.

Figure 3.6 Segmented bar charts for levels of obesity by age group, DIG200 (the normal 
category includes underweight as well as normal)
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Example 3.5

To examine how the prevalence of diabetes differs by the level of obesity and age, 
the DIG200 data are tabulated in a 2 × 3 × 4 table. The results are presented in Figure 
3.7 using a clustered bar chart. Three bars depicting the percent of diabetes in three 
levels of obesity are clustered in each of the age categories. It is interesting to note 
that the level of obesity is closely associated with the prevalence of diabetes in all 
age groups except for the 70 and over age group.

Figure 3.7 Clustered bar charts showing proportion of people in each level of obesity (the 
normal category includes underweight as well as normal) and age group who have diabetes.

It is often possible for “graphs to conceal more than they reveal” by making 
comparisons across groups less evident (van Belle 2002). To highlight that individu-
als categorized as obese have a higher percentage of diabetes across all age categories 
with the exception of the 70 and over age group, we may introduce a line graph as 
shown in Figure 3.7. Careful attention should be paid when constructing graphical 
presentations of data, and possibly several methods should be considered when 
exploring data in order to fi nd the graph that best captures the data’s structure.

Many computer packages are available for creating bar charts (see Program Note 
3.2 on the website).

3.2.4   Histograms

As we said earlier, a histogram is similar to a bar chart but is used with interval/ratio 
variables. The values are grouped into intervals (often called bins or classes) that are 
usually of equal width. Rectangles are drawn above each interval, and the area of 
rectangle represents the number of observations in that interval. If all the intervals are 
of equal width, then the height of the interval, as well as its area, represents the fre-
quency of the interval. In contrast to bar charts, there are no spaces between the rect-
angles unless there are no observations in some interval.
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We demonstrate here the construction of a histogram for the data on systolic blood 
pressure values from patients in the DIG200. Before creating the histogram, however, 
we create a one-way table that will facilitate the creation of the histogram. Table 3.7 
gives the frequency of systolic blood pressure values (SBP) for each individual in the 
DIG200. Note that there are 199 observations because one individual in the placebo 
group has missing information on her systolic blood pressure.

After inspecting the data, you should notice that a large proportion of the blood pres-
sure values appear to end in zero — 137 out of 199, actually. All the values are even 
numbers, with the exception of 17 observations, and 15 values that end in 5. This sug-
gests that the person who recorded the blood pressure values may have had a preference 
for numbers ending in zero. This type of fi nding is not unusual in blood pressure studies; 
however, despite this possible digit preference, we are going to create some histograms 
based on these values shown in Table 3.7.

The following questions must be answered before we can draw the histograms for 
these data:

1. How many intervals should there be?
2. How large should the intervals be?
3. Where should the intervals be located?

Tarter and Kronmal (1976) discuss these questions in some depth. There are no hard 
and fast answers to these questions; only guidelines are provided.

The number of intervals is related to the number of observations. Generally 5 to 15 
intervals would be used, with a smaller number of intervals used for smaller sample 
sizes. There is a trade-off between many small intervals, which allow for greater detail 
with few observations in any category, and a few large intervals, with little detail and 
many observations in the categories.

One method of determining the number of intervals is suggested by Sturges and 
elaborated by Scott (1979). The suggested formula is (log2n + 1), where n is the number 
of observations, to calculate the number of intervals required to construct a histogram. 
Therefore, the width of the interval can be calculated using the expression (xmax − 
xmin)/(log2n + 1). Since there are 199 observations in Table 3.7, we need to fi nd the value 
of log2199 + 1. This value is 8.64, and we round it up to 9, meaning that 9 intervals 
should be used to construct the histogram.

We refer the reader to Appendix A for information on logarithms and how to calculate 
logarithms with different bases. The graph shown here also gives some feel for the shape 
of the logarithmic curve with 2 as the base. Briefl y, log2199 can be calculated dividing 

Table 3.7 Frequency of individual systolic blood pressures (mmHg): DIG200.

Value Freq. Value Freq. Value Freq. Value Freq. Value Freq. Value Freq.

 85  1 105  1 116  8 128  3 138  1 150 12
 90  5 106  2 118  5 130 23 139  2 152  3
 95  2 108  2 120 25 131  1 140 26 155  1
 96  1 110 16 122  4 132  2 142  1 160  3
100 14 112  1 124  4 134  1 144  3 162  1
102  1 114  5 125  3 135  2 145  1 165  1
104  2 115  2 126  1 136  1 148  1 170  5
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log10199 by log102, which is 7.64. The base 10 logarithm is available on most calculators 
or computer software. Alternatively, the value of log2199 can be read from the graph. 
The dotted line in the graph shows that the value of log2199 is about 7.6.

Table 3.8 Intervals of histogram suggested by Sturges for the systolic blood pressure data in Table 3.7.

    Cumulative
 Class Width  Relative Relative Cumulative
Class (Bin) (Bin Width) Frequency Frequency Frequency Frequency

1 [85–95)  6  3.02   3.02   6
2 [95–105) 20 10.05  13.07  26
3 [105–115) 27 13.57  26.63  53
4 [115–125) 48 24.12  50.75 101
5 [125–135) 34 17.09  67.84 135
6 [135–145) 36 18.09  85.93 171
7 [145–155) 17  8.54  94.47 188
8 [155–165)  5  2.51  96.98 193
9 [165–175)  6  3.02 100.00 199

 Total 199 100.00

Table 3.8 illustrates the 9 intervals, and the interval width can be calculated using 
the expression (xmax − xmin)/(log2n + 1). Since (170 − 85)/8.64 = (85)/8.64 = 9.84, we 
round the interval width to 10  mmHg. Notice in Table 3.8 that the notation [85–95) 
means all values from 85 to 95 but not including 95. Here we use the bracket (  [  ) to 
indicate that the value should be included in the interval, whereas the parenthesis (  )  ) 
means up to the value but not including it. We have started the intervals with the value 
of 85, although we could have also begun the fi rst interval with the value of 80.

This is a reasonable approach unless there are some relatively large or small values. 
In this case, exclude these unusual values from the difference calculation and adjust the 
minimum and maximum values accordingly. The location of the intervals is also arbi-
trary. Most researchers either begin the interval with a rounded number or have the 
midpoint of the interval be a round number. The computer packages create histograms 
using the procedures similar to the preceding approach with options to accommodate 
the users’ request (see Program Note 3.3 on the website).

Figure 3.8 displays the histogram for the data in Table 3.8.
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Example 3.6

Create histograms to compare the distributions of systolic blood pressures between 
individuals under 60 years of age and those 60 and over using the DIG200 data set. 
We begin by displaying the number of observations, the minimum value, and the 
maximum value for each of the age groups.

Under 60 years of age:  n = 81, minimum = 90  mmHg, maximum 
 = 170  mmHg

60 years and over:  n = 118, minimum = 85  mmHg, maximum 
 = 170  mmHg

We use Sturges’ rule to determine the number of intervals that should be used to 
construct each histogram. The suggested number of intervals are:

Under 60 years of age: (170 − 90)/(log281 + 1) = 10.9 or 11 intervals
60 years and over: (170 − 85)/(log2118 + 1) = 10.8 or 11 intervals

The same number of intervals is indicated. Even when different numbers of intervals 
were indicated, it will be better to keep the number of intervals the same for a better 
comparison.

Figure 3.9 presents two histograms for these groups. The fi rst histogram displays 
the SBP of patients under 60 years of age and the second histogram for the 60 years 
and over group.

Notice that in this case the relative frequencies are used rather than frequencies 
mainly because the histograms are to be compared and the two groups have an 
unequal number of observations as just shown (i.e., there are 81 patients under 60 
years of age and 118 who are 60 years and over). Relative frequencies allow for 
comparisons between two or more groups even if the groups do not have the same 
number of subjects. It is obvious, for subjects 60 years and over, that the highest 
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Under 60 years of age
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Figure 3.9 Histograms for systolic blood pressure distributions by age group.

percentages of systolic blood pressure readings fall in the intervals between 105 and 
145  mmHg. Subjects under 60 years of age have a third of their systolic blood pres-
sure observations in the interval between 115 and 125  mmHg. After comparing the 
two histograms, it is easy to see that the older age group has a higher concentration 
of subjects with systolic blood pressure values above 135  mmHg, an observation that 
was clearly expected.
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It is possible for histograms constructed from the same data to have different shapes. 
The shapes of the histogram depend on the number of intervals used and how the 
boundaries are set. These differences in constructing the histogram may lead to different 
impressions about the data. However, histograms say basically the same thing about the 
distribution of the sample data even though their shapes are different.

Equal size intervals are used in most histograms. In case the use of unequal size 
intervals is desired, we must make some adjustments. Since the area of the rectangle 
for a category in a histogram refl ects the frequency of the category, we need to adjust 
the height of an uneven size interval to keep the area at the same size. For example, 
assume we are interested in determining the number of subjects with SBP 155  mmHg 
and higher. We can collapse the last two intervals of the histograms presented in Figure 
3.8 into one large interval that is twice as wide as the previous intervals. The histogram 
with the combined category is presented in Figure 3.10. Note that the frequency for the 
combined interval is 11, but the height of this interval is 5.5, one-half of the combined 
frequency. We divided the height by 2 to refl ect the fact that the width of this last interval 
is twice as wide as the other intervals.

3.2.5   Stem-and-Leaf Plots

The stem-and-leaf plot looks similar to a histogram except that the stem-and-leaf plot 
shows the data values instead of using bars to represent the height of an interval. The 
stem-and-leaf plot is used for a relatively small dataset, while the histogram is used for a 
large dataset. Considering the systolic blood pressure readings of the 40 patients from the 
DIG40 data set, the stem contains the tens units and the leaves would be the ones units.

 4 10 | 0045
 9 11 | 05666
16 12 | 0002488
(8) 13 | 00000048
16 14 | 000000044
 7 15 | 00002
 2 16 |
 2 17 | 00

Figure 3.10 Histogram 
for systolic blood 
pressure with uneven 
intervals, DIG200.
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Notice that a stem-and-leaf plot looks like a histogram except we know the values of 
all the observations, and histograms don’t group data in the same way. The fi rst column 
shows a cumulative count of all the observations from the top and from the bottom to 
the interval in which the median value is found. The median is the value such that 50 
percent of the values are less than it, and 50 percent are greater than it. The number of 
observations in the interval containing the median is shown in parentheses. The second 
column is the stem, and the subsequent columns contain the leaves. For example, in the 
fi rst row we read a stem of 10 and leaves of 0, 0, 4, and 5. Since the stem represents 
units of 10 and the leaf unit is 1, these four numbers are 100, 100, 104, and 105. The 
second row has a stem of 11, and there are 5 leaves referring to the systolic blood pres-
sure values of 110, 115, 116, 116, and 116. Note that the fi rst number in the second row 
is 9, which is the cumulative count of observations in the fi rst two rows. There are 7 
values in the third row, and the cumulative count is now 16. The median is the fourth 
row, and its value is 130. The method of determining the median is discussed later.

Example 3.7

Here is a stem-and-leaf plot to compare SBP (mmHg) readings of the following males 
and females in the DIG40 data set:

Males: 100 104 105 110 116 116 116 120 120 128 128 130 130 130 134 138 140
 140 140 140 140 140 140 144 150 150 150 152 170 170
Females: 100 115 120 122 124 130 130 130 144 150

Females Stem Males

 0 10 045
 5 11 0666
420 12 0088
000 13 00048
 4 14 00000004
 0 15 0002
 16
 17 00

By displaying a two-sided stem-and-leaf plot, a comparison of the distributions of 
systolic blood pressures between males and females can be made. The comparison 
shows that female SBPs tend to be lower than male SBPs. The male observations 
have two extreme values occurring at 170  mmHg even though most of the male 
readings are concentrated at 140  mmHg.

A nice characteristic of the data that can be seen from histograms or stem-and-leaf 
plots is whether or not the data are symmetrically distributed. Data are symmetrically 
distributed when the distribution above the median matches the distribution below the 
median. Data could also come from a skewed or asymmetric distribution. Data from a 
skewed distribution typically have extreme values in one end of the distribution but no 
extreme values in the other end of the distribution. When there is a long tail to the right, 
or to the bottom if the data are presented sideways, data are said to be positively skewed. 
If there are some extremely small values without corresponding extremely large values, 
the distribution is said to be negatively skewed.
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3.2.6   Dot Plots

A dot plot displays the distribution of a continuous variable. Consider Example 3.9 fol-
lowing where we want to compare the distribution of the continuous variable, systolic 
blood pressure, across a nominal variable such as age grouped into two categories — 
under 60 years of age and 60 years and over. These plots give a visual comparison of 
the center of the observations as well as providing some idea about how the observations 
vary. Like stem-and-leaf plots, dot plots are used for a relatively small data set.

Example 3.8

A stem-and-leaf plot for the ages of patients in the DIG40 data set is

 3 3 | 148
 9 4 | 455679
17 5 | 00055889
(11) 6 | 01133455568
12 7 | 00134566789
 1 8 | 3

Notice that the data appears to be slightly asymmetric as the observations below the 
row containing the median are not grouped as tightly as those above it. In this case, 
we would consider the distribution of ages to be negatively skewed.

Example 3.9

Dot plots comparing SBP across the age groups of “<60” and “≥60” are shown in 
Figure 3.11.

Figure 3.11 Dot plots for systolic blood pressure by age group, DIG40.

The dot plots allow us to see the data in its entirety. From the graphs, we see that 
the largest systolic blood pressure observation in the 60 and over group is consider-
ably larger than the corresponding largest value in the under 60 years of age group. 
Also notice that dots are stacked up for observations with the same measurement 
value. For example, the stacked dots make it clear that there are two observations 
with the systolic blood pressure reading of 170  mmHg.
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3.2.7   Scatter Plots

The two-dimensional scatter plot is analogous to the two-way frequency table in that it 
facilitates the examination of the relation between two variables. Unlike the two-way 
table, the two-dimensional scatter plot is most effectively used when the variables are 
continuous. Just as it is possible to have higher dimensional frequency tables, it is pos-
sible to have higher dimensional scatter plots, but they become more diffi cult to 
comprehend.

The scatter plot pictorially represents the relation between two continuous variables. 
In a scatter plot, a plotted point represents the values of two variables for an individual. 
We examine the relationship between serum creatinine levels and systolic blood pres-
sure for 40 patients in the DIG40 data set (Table 3.1) using a scatter plot. Let us look at 
the top scatter plot in Figure 3.12. Each circle represents a patient’s serum creatinine 
and systolic blood pressure values. For example, the circle in the upper left-hand corner 
of the plot represents the second patient (ID = 2312) in Table 3.1 with serum creatinine 
of 2.682  mg/dL and SBP of 104  mmHg. Overall, the scatter plot does not appear to show 
any relationship at all. There is a positive association between the variables when larger 
(smaller) values on one variable appear with larger (smaller) values of the other variable. 

Figure 3.12 Scatter 
plot of serum creatinine 
versus systolic blood 
pressure for 40 patients 
with and without 
jittering, DIG40.
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The association would be negative if individuals with large values of one variable tended 
to have small values of the other variable and conversely.

It is possible that several patients have the identical values of both variables. A careful 
examination of the data in Table 3.1 shows that three patients (ID = 4787, 1954, 2439) 
have the identical serum creatinine of 1.307  mg/dL and SBP of 140  mmHg. They are 
represented by one circle in the top scatter plot but by overlapping circles in the bottom 
scatter plot. In the bottom scatter plot a jittering (a very small random value) is added 
to the values of serum creatinine variable. If the jittering is performed for both vari-
ables, then the relative distances between circles could be slightly shifted in one or both 
directions.

Scatter plots are most effective for small to moderate sample sizes. When there are 
many variables such as in the DIG40 data set, a scatter plot matrix can be useful in 
displaying multiple two-way scatter plots (see Figure 3.13). From the plots we can see 
that there is a tendency for a very slight positive relationship between age and serum 
creatinine level and a slight negative relationship between serum creatinine and body 
mass index. There is no visual evidence of a relationship between other variables. Com-
puter packages can be used to create stem-and-leaf plots and scatter plots (see Program 
Note 3.4 on the website).

Figure 3.13 Scatter 
plot matrix examining 
the interrelationship 
among systolic blood 
pressure, creatinine, 
body mass index, and 
age, DIG40.
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This completes the presentation of the pictorial tools in common use with the excep-
tion of the box plot, which is shown later in this chapter. The following material intro-
duces the more frequently used statistics that aid us in describing and summarizing 
data.

3.3   Measures of Central Tendency
Simple descriptive statistics can be useful in data editing as well as in aiding our under-
standing of the data. The minimum and the maximum values of a variable are useful 
statistics when editing the data. Are the observed minimum and maximum values rea-
sonable or even possible? For the patient’s systolic blood pressure readings shown in 
Table 3.9, the minimum reading is 100  mmHg and the maximum is 170  mmHg. These 
values are somewhat unusual given that the average systolic blood pressure is approxi-
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mately 131.4  mmHg, but they are not impossible. We will consider other ways of iden-
tifying unusual values in later sections.

3.3.1   Mean, Median, and Mode

In terms of describing data, people usually think of the average value or arithmetic 
mean. For example, the average systolic blood pressure was useful in determining 
whether or not the maximum and minimum values were reasonable. There are three 
frequently used measures of central tendency: the mean, the median, and the mode.

The sample mean (x–) is the sum of all the observed values of a variable divided by 
the number of observations. The median is defi ned to be the middle value — that is, the 
value such that 50 percent of the observed values fall above it and 50 percent fall below 
it. It can also be called the 50th percentile, where the ith percentile represents the value 
such that i percent of the observations are less than it. The mode is the most frequently 
occurring value.

Table 3.9 Systolic blood pressure reading in ascending order, DIG40.

100 100 104 105 110 115 116 116
116 120 120 120 122 124 128 128
130 130 130 130 130 130 134 138
140 140 140 140 140 140 140 144
144 150 150 150 150 152 170 170

Example 3.10

Calculate the mean systolic blood pressure reading using 40 patients in the DIG40 
data set presented in Table 3.9.

The average or arithmetic mean is

100 100 104 170

40

5256

40
131 4

+ + + + = =
. . .

. mmHg.

We can also represent the mean succinctly using symbols. We shall use upper-case 
X as the symbol for the variable under study — in this case, the SBP for patients in the 
DIG40 data set. We use lower-case x, with subscripts to distinguish each patient’s sys-
tolic blood pressure, to represent the observed value of the variable. For example, the 
fi rst patient’s SBP is represented by x1 and its value is 100  mmHg. The second patient’s 
systolic blood pressure is x2 and its value is also 100  mmHg. In the same way, x3 is 
104  mmHg,  .  .  .  , and x40 is 170  mmHg. Then the sum of the SBP can be represented 
by

 
x x x x xi

i
1 2 3 40

1

40

+ + + + =
=
∑� .

The symbol Σ means summation. The value of i beneath Σ gives the subscript of the 
fi rst xi to be included in the summation process. The value above Σ gives the subscript 

Ch003-P369492.indd   40 11/4/2006   11:17:28 AM



of the last xi to be included in the summation. The value of i increases in steps of 1 from 
the beginning value to the ending value. Thus, all the observations with subscripts 
ranging from the beginning value to the ending value are included in the sum. The 
formula for the sample mean variable, x– (pronounced x-bar), is

 
x

x

n

i

i

n

= =
∑

1

or more specifi cally in the case of this example,

 
x

x

n

i
i= = + + + +( )

==
∑

1

40

100 100 104 170

40
131 4

�
. mmHg.

If we have the data for the entire population, not for just a sample of observations 
from the population, the mean is denoted by the Greek letter m (pronounced “mu”). 
Values that come from samples are statistics, and values that come from the population 
are parameters. For example, the sample statistic x– is an estimator of the population 
parameter m. The population mean is defi ned as

 
μ = =

∑ x

N

i

i

N

1

where N is the population size.

In calculating the median, it is useful to have the data sorted from the lowest to the 
highest value as that assists in fi nding the middle value. Table 3.9 shows the sorted 
systolic blood pressure values for the 40 patients. For a sample of size n, the sample 
median is the value such that half (n/2) of the sample values are less than it and n/2 are 
greater than it. When the sample size is odd, the sample median is the [(n + 1)/2]th 
largest value. For example, the median for a sample of size 33 is thus the 17th largest 
value. The value 17 comes from (33 + 1)/2. When sample size is even, as in the case of 
the data on systolic blood pressure readings presented in Table 3.9, there is no observed 
sample value such that one-half of the sample falls below it and one-half falls above it. 
By convention, we use the average of the two middle sample values as the median — that 
is, the average of the (n/2)th and [(n/2) + 1]th largest values.

Example 3.11

Calculate the median systolic blood pressure readings using 40 patients in the DIG40 
data set presented in Table 3.9. The data are already sorted in ascending order:

x1 = 100, x2 = 100, x3 = 104,  .  .  .  , x40 = 170.

Since we have an even number of patients, identify the (n/2)th observation or the 
(40/2) = 20th observation and the [(n/2) + 1]th observation or [(40/2) + 1] = 21st 
observation. Since x20 = 130 and x21 = 130, the average of these two values is 130.
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The mode is the most frequently occurring value. When all the values occur the same 
number of times, we usually say that there is no unique mode. When two values occur 
the same number of times and more than any other values, the distribution is said to be 
bimodal. If there are three values that occur the same number of times and more than 
any other value, the distribution could be called trimodal. Usually one would not go 
beyond trimodal in labeling a distribution.

It is not unexpected to have no unique mode when dealing with continuous data, since 
it is unlikely that two units have exactly the same values of a continuous variable. 
However, in our data set of systolic blood pressure readings present in Table 3.9, the value 
of 140  mmHg occurs seven times, more frequently than any other reading, and is thus 
the mode. Although blood pressure is a continuous variable, the measurer often has a 
preference for values ending in zero, resulting in multiple observations of some values.

3.3.2   Use of the Measures of Central Tendency

Now that we understand how these three measures of central tendency are defi ned and 
found, when are they used? Note that in calculating the mean, we summed the observa-
tions. Hence, we can only calculate a mean when we can perform arithmetic operations 
on the data. We cannot perform meaningful arithmetic operations on nominal data. 
Therefore, the mean should only be used when we are working with continuous data, 
although sometimes we fi nd it being used with ordinal data as well. The median does 
not require us to sum observations, and thus it can be used with continuous and ordinal 
data, but it also cannot be used with nominal data. The mode can be used with all types 
of data because it simply says which level of the variable occurs most frequently.

The mean is affected by extreme values, whereas the median is not. Hence, if we are 
studying a variable such as income that has some extremely large values, that is posi-
tively skewed, the mean will refl ect these large values and move away from the center 
of the data. The median is unaffected, and it remains at the center of the data. For data 
that are symmetrically distributed or approximately so, the mean and median will be 
the same or very close to each other.

As was just mentioned, the SBP readings ranged from 100 to 170  mmHg for the 40 
observations. The sample mean was 131.4  mmHg, and the sample median was 130  mmHg. 
These two values do not differ very much, since the data set contains observations that are 
relatively extreme on both the low and high end. However, the two values of 170  mmHg 
have caused the mean of 131.4  mmHg to be slightly larger than the median of 130  mmHg.

3.3.3   The Geometric Mean

We use another measure of central tendency when the numbers refl ect population counts 
that are extremely variable. For example, in a laboratory setting, the growth in the 
number of bacteria per area is examined over time. The number of microbes per area 
does not change by the same amount from one period to the next, but the change is 
proportional to the number of microbes that were present during the previous time 
period. Another way of saying this is that the growth is multiplicative, not additive. The 
areas under study may also have used different media, and the microbes may not do 
well in some of the media, whereas in other media the growth is explosive. Hence, we 
may have counts in the hundred or thousands for some of the cultures, whereas a few 
other cultures may have counts in the millions or billions.
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The arithmetic mean would not be close to the center of the values in this situation 
because of the effect of the extremely large values. The median could be used in this 
situation. However, another measure that is used in these situations is the geometric 
mean. The sample geometric mean for n observations is the nth root of the product of 
the values — that is,

 x x x xg n
n= ∗ ∗1 2 � .

Note that since the nth root is used in its calculation, the geometric mean cannot be 
used when a value is negative or zero.

This defi nition of the geometric mean is completely analogous to the arithmetic 
mean. The arithmetic mean is the value such that if we add it to itself (n − 1) times, it 
equals the sum of all the observations. It is found by summing the observations and 
then dividing the sum by n, the sample size. Since in the preceding situation we are 
dealing with data resulting from a multiplicative process, our measure of central ten-
dency should refl ect this. The geometric mean is the value such that if we multiply it 
by itself (n − 1) times, it equals the product of all the observations. It is found by multi-
plying the observations and then taking the nth root of the product.

When n is 2, there is little diffi culty in fi nding the geometric mean, since the product 
of the two observed values is usually not large, and we know that the second root is the 
square root. However, for larger values of n, the product of the observed values may 
become very large, and we may lose some accuracy in calculating it, even when a 
computer is used. Fortunately, there is another way of calculating the product of the 
observations that does not cause any accuracy to be lost.

We can transform the observations to a logarithmic scale. Use of the logarithmic 
scale provides for accurate calculation of the geometric mean. After fi nding the loga-
rithm of the geometric mean, we will transform the value back to the original scale and 
have the value of the geometric mean. In this section, we shall use logarithms to the 
base 10, although other bases could be used.

Again, we refer the reader to Appendix A for more information on logarithms and 
how to perform logarithmic transformation. The following chart shows some idea about 
the relationship between positive numbers and the corresponding base 10 logarithms.
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A key property of the logarithmic transformation is that the level of the mathematical 
operation performed on the arithmetic scale is reduced a level when the logarithmic 
scale is used. For example, a product on the arithmetic scale becomes a sum on the 
logarithmic scale. Therefore, the logarithm of the product of n values is

 
log log .x x x xn i

i

n

1 2
1

∗ ∗( ) =
=
∑�

In addition, taking the nth root of a product on the arithmetic scale becomes division 
by n on the logarithmic scale — that is, fi nding the mean logarithm. In symbols, this 
is

 
x x x x

x

n
xn

n
i

i

n

1 2 3

10
1

10∗ ∗ ∗ = ==
∑

�
log

log .

We now have the logarithm of the geometric mean, and, to obtain the geometric mean, 
we must take the antilogarithm of the mean logarithm — that is,

 x xg = ( )antilog log10 .

Example 3.12

Suppose that the number of microbes observed from six different areas are the fol-
lowing: 100, 100, 1000, 1000, 10,000, and 1,000,000. The geometric mean is found 
by taking the logarithm of each observation and then fi nding the mean logarithm. 
The corresponding base 10 logarithms are 2, 2, 3, 3, 4, and 6, and their mean is 3.33. 
The geometric mean is the antilog of 3.33, which is 2154.43. The arithmetic mean of 
these observations is 168,700, a much larger value than the geometric mean and also 
much larger than fi ve of the six values. The usual mean does not provide a good 
measure of central tendency in this case. The value of the median is the average of 
the two middle values, 1000 and 1000, giving a median of 1000 that is of the same 
order of magnitude as the geometric mean.

The geometric mean has also been used in the estimation of population counts 
— for example, of mosquitos — through the use of capture procedures over several 
time points or areas. These counts can be quite variable by time or area, and hence, 
the geometric mean is the preferred measure of central tendency in this situation, 
too.

These (mean, median, mode, and geometric mean) are the more common measures 
of central tendency employed in the description of data. The value of central tendency, 
however, does not completely describe the data. For example, consider the nine systolic 
blood pressure readings

 100 101 102 110 115 124 125 126 135.

Suppose that the four smallest observations were decreased by 10  mmHg and the four 
largest were increased by 10  mmHg. The values would now be the following:
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 90 91 92 100 115 134 135 136 145.

The means and medians of the two data sets are the same, 115  mmHg, yet the sets 
are very different. The sample mean of 115.3  mmHg and the sample median of 115  mmHg 
capture the essence of the fi rst data set. In the second data set, however, the measures 
of central tendency are less informative as only one value is close to the mean and 
median. Therefore, some additional characteristics of the data must be used to provide 
for a more complete summary and description of the data and to distinguish between 
dissimilar data sets. The next section deals with this additional characteristic, the vari-
ability of the data.

3.4   Measures of Variability
The observations in the preceding second set of data corresponding to the systolic blood 
pressure of patients varied much more than those in the fi rst set of data, but the means 
were the same. Hence, to provide for a more complete description of the data, we need 
to include a measure of its variability. A number of measures or values — the range, 
the interquartile range, selected percentiles, the variance, the standard deviation, and 
the coeffi cient of variation — are used to describe the variability in data.

3.4.1   Range and Percentiles

The range is defi ned as the maximum value minus the minimum value. It is simple to 
calculate, and it provides some idea of the spread of the data. For the patients under 60 
years of age in Table 3.10, the range is the difference between 152 and 100, which is 52. 
In the second data set pertaining to patients 60 and over, the range is the difference 
between 170 and 100, which is 70.

This difference in the two ranges points to a dissimilarity between the two data sets. 
Although the range can be informative, the range has two major defi ciencies: (1) It 
ignores most of the data, since only two observations are used in its defi nition, and (2) 
its value depends indirectly on sample size. The range will either remain the same or 
increase as more observations are added to a data set; it cannot decrease. A better 
measure of variability would use more of the information in the data by using more of 
the data points in its defi nition and would not be so dependent on sample size.

Percentiles, deciles, and quartiles are locations of an ordered data set that divide the 
data into parts. Quartiles divide the data into four equal parts. The fi rst quartile (q1), 
or 25th percentile, is located such that 25 percent of the data lie below q1 and 75 percent 
of the data lie above q1. The second quartile (q2), or 50th percentile or median, is located 

Table 3.10 Systolic blood pressure (mmHg) of patients under 60 years and 60 years and over, DIG40.

 Under 60 Years 60 Years and Over

100 115 116 120 120 100 104 105 110 116
124 130 130 130 130 116 120 122 128 128
134 140 140 140 140 130 130 138 140 140
150 152    140 144 144 150 150
     150 170 170
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such that half (50 percent) of the data lie below q2 and the other half (50 percent) of the 
data lie above q2. The third quartile (q3), or 75th percentile, is located such that 75 
percent of the data lie below q3 and 25 percent of the data lie above q3. The interquartile 
range, the difference of the 75th and 25th percentiles (the third and fi rst quartiles), uses 
more information from the data than does the range. In addition, the interquartile (or 
semiquartile) range can either increase or decrease as the sample size increases. The 
interquartile range is a measure of the spread of the middle 50 percent of the values. To 
fi nd the value of the interquartile range requires that the fi rst and third quartiles be 
specifi ed, and there are several reasonable ways of calculating them. We shall use the 
following procedure to calculate the 25th percentile for a sample of size n:

1. If (n + 1)/4 is an integer, then the 25th percentile is the value of the [(n + 1)/4]th 
smallest observation.

2. If (n + 1)/4 is not an integer, then the 25th percentile is a value between two 
observations. For example, if n is 22, then (n + 1)/4 is (22 + 1)/4 = 5.75. The 25th 
percentile then is a value three-fourths of the way between the 5th and 6th smallest 
observations. To fi nd it, we sum the 5th smallest observation and 0.75 of the dif-
ference between the 6th and 5th smallest observations.

The sample size is 40 for the systolic blood pressure data in Table 3.11. According 
to our procedure, we begin by sorting the data in ascending order. Next, we calculate 
(40 + 1)/4, which is 10.25. Hence the 25th percentile is a value one-fourth of the way 
between the 10th and 11th smallest observations. Since the 10th and 11th smallest obser-
vations have the same value of 120, the 25th percentile of the fi rst quartile is 120  mmHg. 
The 75th percentile is found in the same way except that we use 3(n + 1)/4 in place of 
(n + 1)/4. Since 3(40 + 1)/4 yields 30.75, the 75th percentile is a value three-fourths of 
the way between the 30th and 31st observations. Since the 30th and 31st observations 
have the same value of 140, the 75th percentile, or the third quartile, is 140  mmHg. 
Hence, the interquartile range is 140 − 120 = 20. Calculating the interquartile range for 
systolic blood pressure readings of patients under 60 years of age and 60 years and over 
gives the values 20 and 28, respectively. The larger interquartile range for the 60 and 
over age group suggests that there is more variability in the data compared to the systolic 
blood pressure readings for the younger age group.

The values of fi ve selected percentiles — the 10th, 25th, 50th, 75th, and 90th — when 
considered together provide good descriptions of the central tendency and the spread of 
the data. However, when the sample size is very small, the calculation of the extreme 
percentiles is problematic. For example, when n is 5, it is diffi cult to determine how the 
10th percentile should be calculated. Because of this diffi culty, and also because of the 
instability of the extreme percentiles for small samples, we shall calculate them only 
when the sample size is reasonably large — say, larger than 30. The next measure of 
variability to be discussed is the variance, but, before considering it, we discuss the box 
plot because of its relation to the fi ve percentiles.

Table 3.11 Systolic blood pressure of patients who have had a previous myocardial infarction stratifi ed 
by the dose level of Digoxon treatment assigned, DIG200.

 Low Dose Digoxon Treatment (0.125  mg/dL) High Dose Digoxon Treatment (0.375  mg/dL)

140 102  85 160 150  96 118 120 124 140
144 130 130 110 110 120 122 130 140 150

Ch003-P369492.indd   46 11/4/2006   11:17:29 AM



3.4.2   Box Plots

The box and whiskers plot, or just box plot, graphically gives the approximate location 
of the quartiles, including the median, and extreme values. The advantage of using box 
plots when exploring data is that several of the characteristics of the data such as outli-
ers, symmetry features, the range, and dispersion of the data can be easily compared 
between different groups. The lower and upper ends (hinges) of the box mark the 25th 
and 75th percentiles or the locations of the fi rst and third quartiles, while the solid band 
indicates the 50th percentile or the median. The whiskers represent the range of values, 
and the default option used in most statistical packages is to draw the whiskers out to 
1.5 or 3 times the interquartile range. If the box plot is presented vertically, the area 
from the top edge to the bottom edge of the box represents the interquartile range.

From the systolic blood pressure data in Table 3.9, we already found the following 
information:

minimum value = 100  mmHg,
fi rst quartile = 120  mmHg,
median = 130  mmHg,
third quartile = 140  mmHg,
maximum value = 170  mmHg.

These values are plotted in a box plot in Figure 3.14.

We can use Figure 3.14 to assess the symmetry of the systolic blood pressure distri-
bution. The box plots and histograms give us an indication of whether or not the data 
are skewed. For these patients, the distance from the median to the third quartile looks 
about the same as the corresponding distance to the fi rst quartile. But there is a slightly 
longer tail to the right than to the left, indicating the distribution is slightly skewed to 
the right. In the Example 3.13, we go one step further by comparing the systolic blood 
pressures across all the age groups.

100 120 140 160 180
Systolic Blood Pressure (mmHg)

Figure 3.14 Box plot of 
systolic blood pressure 
values, DIG40.
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Example 3.13

Using the data from Table 3.11, individual box and whisker plots of systolic blood 
pressure for the two age groups are created in Figure 3.15.

90 100 110 120 130 140 150 160 170 180

Systolic Blood Pressure (mmHg)

60 & Over

Under 60

Figure 3.15 Box plots of systolic blood pressure across age groups, DIG40.

By looking at the box and whiskers plots side by side, it’s possible to compare the 
distributions of systolic blood pressures for the two age categories. The medians are 
identical for both age groups. However, systolic blood pressure readings are more 
variable for the 60 and over group. This greater variability is shown in the larger 
width from the fi rst quartile to the third quartile and through the greater range of 
the 60 and over group.

3.4.3   Variance and Standard Deviation

The variance and its square root, the standard deviation, are the two most frequently 
used measures of variability, and both use all the data in their calculations. The variance 
measures the variability in the data from the mean of the data. The population variance, 
denoted by s 2 for a population of size N, is defi ned as
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and the sample standard deviation is defi ned by
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The population variance could be interpreted as the average squared difference from 
the population mean, and the sample variance has almost the same interpretation about 
the sample mean.

The variance uses the sum of the squared differences from the mean divided by N, 
whereas the sample variance uses n − 1 in its denominator. Why were the squared differ-
ences chosen for use instead of the differences themselves? Perhaps the following table 
will clarify this. In Table 3.12 we fi nd the systolic blood pressure readings for patients on 
low and high dose Digoxin treatment who have had a previous myocardial infarction.

If we consider only the 10 patients who were on high dose treatment, we can construct 
the information provided in Table 3.12. The sum of systolic blood pressure minus the 
mean must be zero since the positive differences cancel the negative differences.

Table 3.12 Differences and squared differences from the mean systolic 
blood pressure for 10 patients on high dose (0.375  mg/dL) Digoxin 
treatment who have had a previous myocardial infarction.

 SBP (mmHg) SBP - mean (SBP - mean)2

  96 −30  900
  118 −8  64
  120 −6  36
  124 −2   4
  140 14  196
  120 −6  36
  122 −4  16
  130  4  16
  140 14  196
  150 24  576

Total 1260  0 2040
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Additionally, why is n − 1 used instead of n in the denominator of the sample vari-
ance? It can be shown mathematically that the use of n results in an estimator of the 
population variance, which on the average slightly underestimates it. The following will 
give some feel for the use of n − 1.

In the formula for the sample variance, the population mean is estimated by the 
sample mean. This estimation of the population mean reduces the number of indepen-
dent observations to n − 1 instead of n as is shown next. For example, you are told that 
there are three observations and that two of the values along with the sample mean are 
known. Can you fi nd the value of the other observation? If you can, this means that 
there are only two independent observations, not three, once the sample mean is calcu-
lated. Suppose that the two values are 6 and 10 and the sample mean is 9. Since the 
mean of the three observations is 9, this indicates that the sum of the values is 27 and 
that the unknown value is [27 − (6 + 10)] = 11. In this sample of size three, given 
knowledge of the sample mean, only two of the observations are independent or free to 
vary. Hence, once a parameter (in this case the population mean) is estimated from the 
data, it reduces the number of independent observations (degrees of freedom) by one. 

Ch003-P369492.indd   49 11/4/2006   11:17:29 AM



50  Descriptive Methods

To account for this reduction in the number of independent observations, n − 1 is used 
in the denominator of the sample variance.

For the 10 systolic blood pressure values from patients on high dose Digoxin treat-
ment in Table 3.12, the value of the sample variance is
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and the value of the sample standard deviation is
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The sample variance and standard deviation for the 10 values from patients on low dose 
Digoxin treatment in Table 3.11 are 561.4 and 23.7, respectively — much larger values 
than the corresponding statistics for the 10 values in the high dose group. These statistics 
refl ect the greater variation in the low dose values than in the high dose values.

The variance changes when nonconstant changes are made to all observations in the 
data. How does the value of the variance change when (1) a constant is added to (sub-
tracted from) all the observations in the data set and (2) all the observations are multi-
plied (divided) by a constant?

The answer to the fi rst question is that there is no change in the value of the variance, 
as can be seen from the following. If all the observations are increased by a constant 
— say, by 10 units — the mean is also increased by the same amount. Therefore, the 
constants will simply cancel each other out in the squared differences — that is,

 [(xi + 10) − (m + 10)]2 = (xi − m)2

and thus there is no change in the sum of the squared differences or in the variance.

When all the observations are multiplied by a constant, the variance is multiplied by 
the square of the constant as can be seen from the following. If all the observations are 
multiplied by a constant — say, by 10 — the mean is also multiplied by the same amount. 
Therefore, in the squared differences we have

 [(xi  *  10) − (m  *  10)]2 = [(xi − m)  *  10]2 = (xi − m)2  *  102

and the sum of the squared differences, and thus the variance, is multiplied by the con-
stant squared. This means that the standard deviation is multiplied by the constant. 
These two properties will be used in Chapter 5.

In later chapters, the variance and the standard deviation are shown to be the most 
appropriate measures of variation when the data come from a normal distribution, as 
knowledge of them and the mean is all that is necessary to completely describe the data. 
The normal distribution is the bell-shaped distribution often used in the grading of 
courses, and it is the most widely used distribution in statistics. The interquartile range 
and the fi ve percentiles are useful statistics for characterizing the variation in data regard-
less of the distribution from which the data are selected, but they are not as informative 
as the mean and variance are when the data come from a normal distribution.
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One last measure of variation is the coeffi cient of variation, defi ned as 100 percent 
times the ratio of the standard deviation to the mean. In symbols this is (s/m)100 percent, 
and it is estimated by (s/x–)100 percent. The coeffi cient of variation is a relative measure 
of variation, since in dividing by the mean, it directly takes the magnitude of the values 
into account. Large values of the coeffi cient suggest that the data are quite variable.

The coeffi cient of variation has several uses. One use is to compare the precision of 
different studies. If another experiment has a much smaller coeffi cient of variation than 
that in your study of the same substance, this suggests that there may be room for 
improvement in your study procedures. Another use is to determine whether or not there 
is so much variability in the data that the measure of central tendency is of little value. 
For example, the NCHS does not publish sample means for variables if the estimated 
coeffi cient of variation is greater than 30 percent.

Let us calculate the estimated coeffi cients of variation for our two sets of 10 observa-
tions in Table 3.11. For the fi rst set, s was 23.7 and s was 15.1 in the second set. The 
sample mean was approximately 126  mmHg in both sets. These values lead to coeffi -
cients of variation of 18.8 percent (= [23.6946/126.1] 100 percent) and 12.0 percent in 
sets one and two, respectively. These values reinforce our feeling that the mean provided 
more useful information in the second set but was of less value in describing the data 
in the fi rst set.

See Program Note 3.5 on the website for the use of computer packages for descrip-
tive statistics and box plots.

3.5   Rates and Ratios
Various forms of rates and ratios have been used in describing the health status and the 
change or growth of population. Rates and ratios are relative numbers that relate some 
absolute number of events to some other number such as the total population at that 
time. In this section we examine vital rates and population growth rates.

The rates of diseases and vital rates, which include death rates in general, infant 
mortality rates, feto-infant, neonatal and postneonatal mortality rates, and birth rates, 
are frequently used measures in public health. These rates are useful in determining the 
health status of a population, in monitoring the health status over time, in comparing 
the health status of populations, and in assessing the impact of policy changes.

For example, the infant mortality rate is often used in comparing the performance of 
health systems in different countries. In 2000, the United States had an infant mortality 
rate higher than that of 26 other nations. The U.S. rate was 6.9 infant deaths under 1 year 
of age per 1000 live births compared to a low rate of 3.2 for Japan. Most of the Western 
European nations and some Pacifi c Rim nations or large cities (Japan, Singapore, and 
Hong Kong) had lower rates than the United States. Canada’s health system is often touted 
as a model for the United States because of its lower cost. How does Canada’s infant 
mortality rate compare to that of the United States? Canada’s infant mortality rate in 
2000 was 5.3, almost 25 percent lower than the U.S. rate. The progress in reducing infant 
mortality has been most impressive, as can be seen from the U.S. rate for 1967 of 22.4 
shown in Figure 1.1 in Chapter 1 compared to its 2000 rate of 6.9.

As can be seen from the following defi nition, a rate is basically a relative number 
multiplied by a constant. A rate is defi ned as the product of two parts: (1) the number 
of persons who have experienced the event of interest divided by the population size 
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and (2) a standard population size. For example, according to the data compiled by the 
National Center for Health Statistics, there were 4,021,726 live births in an estimated 
population of 288,369,000 in the United States in 2002. The corresponding birth rate 
per 100,000 is found by taking (4,021,726/288,369,000) times 100,000, and it equals 
13.9 births per 100,000 population. This is considerably lower than the corresponding 
rate for the United States in 1960 of 23.7 births per 100,000.

However, as is often the case with rates, there is a problem in determining the value 
of the denominator — that is, the 2002 U.S. population. What is meant by the 2002 
population size? Is it as of January 1, July 1, December 31, or some other date? Conven-
tion is that the middle of the period (mid-2002) population size is used. An additional 
problem is that Census data were available for 2000 but not for 2002, which introduces 
some uncertainty in the value used. In this case, NCHS used an estimate of the 2002 
midyear resident population based on the estimates of the U.S. Bureau of Census. The 
uncertainty in the value of the denominator of the rate should be of little concern given 
the magnitude of the numbers involved in this situation.

Vital rates are usually expressed per 1000 or per 100,000 population. As was just 
mentioned, infant mortality rates are expressed per 1000 live births with the exception 
of feto-infant mortality rates. Feto-infant mortality rates are based on the number of 
late fetal deaths plus infant deaths under 1 year per 1000 live births. Neonatal mortality 
rates are based on deaths of infants who were less than 28 days old, and postneonatal 
rates are based on deaths of infants between 28 and 365 days old. This split of infant 
deaths is useful because often the neonatal deaths may be due to genetic factors, whereas 
the postneonatal deaths may have more to do with the environment.

Note that as the infant mortality of 1988 rate example in Chapter 1 showed, the 
children whose deaths are used in the conventional method of calculating this rate may 
have been born in 1987, not 1988. Hence, the numerator, the number of deaths, comes 
from both 1987 and 1988 births, whereas the denominator is based solely on 1988 births. 
This should cause no problem unless something happened that caused the mortality 
experience or the number of births to differ greatly between the two years. One way of 
dealing with this possibility of a difference between the years is to combine several 
years of data. Often health agencies pool data over three years to provide protection 
against the instability of small numbers and to reduce the possible, but unlikely, effect 
of very different birth or mortality experiences across the years.

3.5.1   Crude and Specifi c Rates

Rates may be either crude or specifi c. Crude rates use the total number of events in 
their defi nition, whereas specifi c rates apply to subgroups in the population. For example, 
there may be age-, gender-, or race-specifi c birth or death rates. For an age-specifi c 
death rate, only the deaths to individuals in the specifi c age group are used in the 
numerator, and the denominator is the total number of individuals in the specifi c age 
group. Specifi c rates are used because they supply more information and also allow for 
more appropriate comparisons of groups.

For example, the crude death rate for the United States in 2002 was 847.3 per 100,000 
population, and the age-specifi c death rates, as shown in Table 3.13, varied from 17.4 
for the 5- to 14-year-old group to 14,828.3 for the 85-year-old and over group (NCHS 
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2004). The age-specifi c rates provide more information than the crude rates. For the 
same year the crude death rate for males was 846.6 versus 848.0 for females. There is 
no appreciable gender difference in the crude death rates. However, the age-specifi c 
death rates for males are higher than the female-specifi c rates in all age groups. Perhaps 
the lack of a difference between genders in the crude rate is related to differences in 
the age distributions. The age-specifi c rates by gender, shown in Table 3.13, provide a 
better description of the mortality experience than the crude rates. Without knowledge 
of the age distributions, it is diffi cult to conclude whether or not the age variable is 
responsible for the lack of a difference in the crude rates.
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Table 3.13 Crude and age-specifi c death rates for the United States by gender in 2002.

 US Total Population Male Population Female Population

All ages, crude 847.3 846.6 848.0

Under 1 695.0 761.5 625.3
1–4 31.2 35.2 27.0
5–14 17.4 20.0 14.7
15–24 81.4 117.3 43.7
25–34 103.6 142.2 64.0
35–44 202.9 257.5 148.8
45–54 430.1 547.5 316.9
55–64 952.4 1,184.0 738.0
65–74 2,314.7 2,855.3 1,864.7
75–84 5,556.9 6,760.5 4,757.9
85 & over 14,828.3 16,254.5 14,209.6

Source: NCHS, 2004, Tables 1, 34, and 35 and page 442

As just shown, one problem with the use of specifi c rates is that they are not easily 
summarized. They do provide more information than the crude rate, which gives a single 
value for a population, but sometimes it is diffi cult to draw a conclusion based on the 
examination of the specifi c rates. However, because of the strong linkage between 
mortality and age, age often must be taken into account in the comparison of two or 
more populations. One way of adjusting for age or other variables while avoiding the 
problem of many specifi c rates is to use adjusted rates.

3.5.2   Adjusted Rates

Adjusted rates are weighted rates, as will be shown following. There are direct and 
indirect methods of adjustment; the choice of which method to use depends on what 
data are available. The direct method requires that we have the specifi c rates for each 
study population and a standard population. Table 3.14 provides the age-specifi c death 
rates for both male and female populations of the year 2002. The 2000 U.S. population 
proportions represent the standard population. The standard population provides a refer-
ent for purposes of comparison. Starting with 2001, NCHS uses the 2000 U.S. resident 
population as the standard for age-adjusting death rates. Prior to 2001 the 1940 U.S. 
population was used as the standard for age-adjusting mortality statistics. The choice 
of a standard population is subjective. For example, in comparing the rates between 
states, often the U.S. population would be used as the standard. In comparing counties 
of a state, the state population often would be used as the standard. For comparing rates 
over time, the population at a previous time point could be used as the standard. Another 
alternative might be to pool the populations of the areas or times under study and use 
the pooled population as the standard.
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Table 3.14 Direct method of adjusting the 2002 U.S. male and female death rates using 2000 U.S. 
population as the standard.

  Male Population Female Population

 U.S. Population Specifi c Expected Specifi c Expected
Age Proportion Ratesa Deathsa Ratesa Deathsa

Under 1 0.013818 761.5 10.5 625.3 8.6
1–4 0.055317 35.2 1.9 27.0 1.5
5–14 0.145565 20.0 2.9 14.7 2.1
15–24 0.138646 117.3 16.3 43.7 6.1
25–34 0.135573 142.2 19.3 64.0 8.7
35–44 0.162613 257.5 41.9 148.8 24.2
45–54 0.134834 547.5 73.8 316.9 42.7
55–64 0.087247 1,184.0 103.3 738.0 64.4
65–74 0.066037 2,855.3 188.6 1,864.7 123.1
75–84 0.044842 6,760.5 303.1 4,757.9 231.4
85 & over 0.015508 16,254.5 252.1 14,209.6 220.4

Total 1.000000  1013.7b  715.2b

aPer 100,000 population
bAge-adjusted death rate per 100,000 population
Source: NCHS, 2004, Tables 1, 34, and 35, and page 442

In performing the age adjustment in Table 3.14, the 2000 U.S. age distribution is used 
as the standard. The adjustment process consists of applying the male and female age-
specifi c death rates to the standard population’s age distribution and then summing the 
expected number of deaths over the age categories. Another way of saying this is that each 
age category’s death rate is weighted by that age category’s share of the standard popula-
tion. The direct age-adjusted death rates for 2002 male and female populations using the 
U.S. as the 2000 standard population are 1013.7 and 715.2 deaths per 100,000 population, 
respectively. The male morality rate is about 30 percent higher than the female rate.

The indirect method is an alternative to be used when we do not have the data 
required for the direct method or when the specifi c rates may be unstable because they 
were based on small numbers. The indirect method requires the specifi c rates for the 
standard population and the age (or, for example, gender or race) distribution for 
the population to be adjusted. It is more likely that these data will be available than the 
age-specifi c death rates in the population to be adjusted. The fi rst step in calculating 
the indirect age-adjusted death rate is to multiply the age-specifi c death rates of the 
standard population (the U.S.) by the corresponding age distribution of the population 
to be adjusted. Table 3.15 shows the calculation of indirect age-adjusted rate for 
American Indian or Alaskan Native male and female populations using the 2000 
U.S. age-specifi c rates as the standard.

The observed crude death rates for American Indian/Alaskan Native male and female 
populations are 439.6 and 367.7 per 100,000, respectively. The male crude death rate is 
about 20 percent higher than the female rate. When age is taken into account, the gender 
difference in mortality may increase, since the average age of the female population is 
older than that of the male population.

In performing the indirect age standardization, the 2000 U.S. age-specifi c mortality 
rates are applied to the age distribution of the male and female populations of American 
Indian/Alaskan Natives. The expected death rates are created by multiplying the U.S. 
age-specifi c death rates by the proportion of people in the corresponding age groups for 
the male and female American Indian/Alaskan Native populations and then summing 
these expected numbers of deaths over the age categories. The ratio of the observed to 
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the expected death rates is the standardized mortality ratio (SMR). From Table 3.15, we 
see that the SMRs for the male and female populations are 1.063 and 0.695, respectively. 
The male SMR is 53 percent higher than the female SMR and the gender difference is 
more markedly shown, just as we expected. To fi nd the indirect age-adjusted death rate 
for American Indian/Alaskan Native populations, we now multiply the crude rate for 
the standard population (854.0 per 100,000) by the SMRs. Thus, the indirect age-
adjusted mortality rates for American Indian/Alaskan Native male and female popula-
tions are 907.8 and 593.3 per 100,000, respectively.

Both the direct and indirect age-adjustment methods can be used to adjust for more 
than one variable; for example, age and gender are often used together. Gender is frequently 
used because the mortality experiences are often quite different for females and males.

3.6   Measures of Change over Time
To understand the change in the height of a child or the growth of population over time, 
we may plot the data against time. We look fi rst for an overall pattern and then for 
deviations from that pattern. For certain phenomena the points follow a straight line, 
and for other phenomena the points are nonlinear. In this section, we examine two well-
known patterns of growth: linear and exponential.

3.6.1   Linear Growth

Linear growth means that a variable increases by a fi xed amount at each unit of time. 
The height of a child or the production of food supply may take this pattern. To describe 
this pattern, we write a mathematical model for the straight-line growth of variable y.

 y = a + bt.

Table 3.15 Indirect age-adjusted death rates for the 2002 male and female populations of American 
Indian or Alaska Natives using the 2000 U.S. age-specifi c death rates as the standard.

  American Indian or Alaskan Native, 2002

  Male Population Female Population

 U.S. Age-Specifi c Population Expected Population Expected
Age Ratesa 2000 Proportion Deathsa Proportion Deathsa

All ages, crude 854.0 439.6a  367.7a

Under 1 736.7 0.013681 10.1 0.012970 9.6
1–4 32.4 0.065798 2.1 0.063554 2.1
5–14 18.0 0.192182 3.5 0.186122 3.4
15–24 79.9 0.186971 14.9 0.175746 14.0
25–34 101.4 0.154397 15.7 0.144617 14.7
35–44 198.9 0.151792 30.2 0.154345 30.7
45–54 425.6 0.117915 50.2 0.124514 53.0
55–64 992.2 0.065798 65.3 0.070687 70.1
65–74 2,399.1 0.033225 79.7 0.038911 93.4
75–84 5,666.5 0.014332 81.2 0.020752 117.6
85 & over 15,524.4 0.003909 60.7 0.007782 120.8

Total  1.000000 413.6 1.000000 529.4

Standardized mortality ratio (SMR) 439.6/413.6 = 1.063 367.7/529.4 = 0.695
Indirect age-adjusted death rate 854(1.063) = 907.8a 854(0.695) = 593.3a

aPer 100,000 population
Source: NCHS, 2004, Tables 1, 34, and 35 and page 442
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In this model, b is the increment by which y changes when t increases by one unit and 
a is the base value of y when t = 0.

Example 3.14

The stature-for-age growth chart of U.S. boys is shown in Figure 3.16 (NCHS) 2006. 
The growth pattern exhibits a roughly linear trend between ages 2 to 15 years. For 
a typical child (50th percentile) a is about 34 inches (at age 2) and b is roughly 2.5 

Figure 3.16 Growth chart (stature-for-age) for U.S. boys, 2 to 20 years of age.
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inches. From this we can tell that the stature of a 12-year-old boy would be about 59 
inches [= 34 + 2.5(10)], and the chart also shows this value. The chart also shows 
that the stature of boys varies more as they grow older.

We will explore this linear growth model further in Chapter 13. Because no straight 
line usually passes exactly through all data points, we need to fi nd a line that fi ts the 
points as well as possible. We will learn how to estimate the best fi tting line from the 
data.

3.6.2   Geometric Growth

The population size of a community usually does not follow the linear growth model. 
The change in the population size over time in an area can simply be described as the 
number of people added or reduced between two time points. For comparison purposes, 
we can express the change as percent of the base population. If the time period is the 
same, the percent of change can be compared between populations. The percent of 
change from time 0 to time t in the population P is calculated by

 

P P

P

P

P
t t− ( ) = −( ) ( )0

0 0

100 1 100 .

For example, the U.S. population increased from 248,709,873 in 1990 to 281,421,906 in 
2000, showing a 13.15 percent increase over a 10-year period.

Percent change indicates a degree of change, but it is not yet a “rate of change.” Like 
other vital rates, a rate of change should express change as a relative change in popula-
tion size per year. We need to convert the percent change into an annual rate. But we 
cannot simply take one-tenth of the percent change (arithmetic mean) as an annual 
growth rate. Equal degrees of growth do not produce equal successive absolute incre-
ments because they follow the principle of compounded interest. In other words, a con-
stant rate of growth produces larger and larger absolute increments, simply because the 
base of total population steadily becomes larger. Therefore, the linear growth model 
would not apply to population growth.

If a population is growing at an annual rate of r, then the population at time 1 would 
be the base plus an incremental change — that is, (a + ar) or a(1 + r). If the population 
is subject to the same constant growth rate, the population at time t will be

 y = a(1 + r) t.

Example 3.15

The geometric growth model fi ts well to the growth of money deposited at a bank 
with the interest added at the end of each year. Suppose $1000 is deposited and earns 
interest at an annual rate of 10 percent for 10 years. The amount in the account (y) 
at each anniversary date can be calculated by y = 1000(1 + 0.1) t, where t ranges from 
1 to 10. Figure 3.17 shows the results. The money grew more than 100 percent 
because the interest was compounded annually.
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3.6.3   Exponential Growth

We know that population is changing continuously as births and deaths occur through-
out the year. We want to fi nd a model that describes the growth as a continuous process. 
This new model is the exponential growth model and it has the following form:

 y = aert

where r is annual growth rate, e is a mathematic constant approximately equal to 
2.71828, and a is the population at t = 0. Figure 3.18 graphically shows the exponential 
growth of a population of 10,000 at an annual growth rate of 5 percent over a 30-year 
period.

Relating to the bank interest rate example, this model assumes that the interest is 
compounded continuously.

Figure 3.17 Account value over time for $1000 earning an annual interest rate of 10 percent.

If one wants to have the $1000 to be tripled over the 10-year period, then what 
level of annual interest rate would be required? We can solve 3000 = 1000(1 + r)10 
for r as follows:

r + =
( )( ) = ( ) =1
3

10

1 09861

10
1 1161exp

ln
exp

.
. .

One needs to fi nd a bank that offers an annual interest rate of 11.6 percent.

Example 3.16

The U.S. population grew from 248,709,873 in 1990 to 281,421,906 in 2000. What 
would be an annual growth rate over the 10-year period? We can solve the following 
equation for r as follows:
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281421906 = 248709873e10r

ln(281421906/248709873) = 10r
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⎞
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=
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0 1236
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0 01236

The U.S. population grew at the annual rate of 1.24 percent.

Using the growth rate computed, we could project future size of population. Let us 
project the U.S. population in 2009 assuming the rate of growth remains constant.

y = 281421906(e9(0.01236)) = 292050102

Over 10 million people would be added to the U.S. population in 9 years. This type 
of projection is acceptable for a short time period, but it should not be used for a 
long-range projection.

Example 3.17

(population doubling time): How long would it take to double the 2000 U.S. popula-
tion assuming the annual growth rate remains constant? To answer this question, we 
solve the following equation for t.

2a = aert, where r = 0.01236

2 = e0.01236t

ln(2) = 0.01236t

t =
( )

= =ln

.

.

.
. .

2

0 01236

0 69315

0 01236
56 09

The U.S. population will double in 56 years or in 2056.

Doubling means that y/a = 2 and natural logarithm of 2 is 0.69315. The solution 
suggests that if a population is increasing at an annual rate of 1 percent, then the 
population size will double in about 70 years. The time required to triple the popula-
tion can be obtained by using ln(3). Similarly, the time required to increase the 
population by 50 percent can be obtained by using ln(1.5).

Figure 3.18 Increase of 
population of 10,000 at 
an annual rate of 
increase of 5 percent.

Measures of Change over Time  59

Ch003-P369492.indd   59 11/4/2006   11:17:30 AM



60  Descriptive Methods

3.7   Correlation Coeffi cients
Earlier in the chapter, we presented a scatter plot of serum creatinine level and systolic 
blood pressure for 40 patients in the DIG40 data set, and we concluded that there was 
no appreciable association between serum creatinine and systolic blood pressure. 
Although this statement is informative, it is imprecise. To be more precise, a numerical 
value that refl ects the strength of the association is needed. Correlation coeffi cients are 
statistics that refl ect the strength of association.

3.7.1   Pearson Correlation Coeffi cient

The most widely used measure of association between two variables, X and Y, is the 
Pearson correlation coeffi cient denoted by r (rho) for the population and by r for the 
sample. This measure is named after Karl Pearson, a leading British statistician of 
the late 19th and early 20th centuries, for his role in the development of the formula for 
the correlation coeffi cient.

We want the correlation coeffi cient to be large, approaching +1 as a limit, as the 
values of the X, Y pair show an increasing tendency to be large or small together. When 
the values of the X, Y pair tend to be opposite in magnitude — that is, a large value of 
X with a small value of Y, or vice versa — the measure should be large negatively, 
approaching −1 as the limit. If there is no overall tendency of the values of the X, Y pair, 
the measure should be close to 0.

By large or small, we mean in relation to its mean. Because of the preceding require-
ments for the correlation coeffi cient, one simple function that may be of interest here is 
the product of (xi − x–) with (yi − y–). Let us focus on the sign of the differences, tempo-
rarily ignoring the magnitude. The possibilities are as follows:

xi − x– yi − y– (xi − x–)(yi − y–)

+ + +
− − +
+ − −
− + −

The product of the differences does what we want; that is, it is positive when the X, Y 
pairs are large or small together and negative when one variable is large and the other 
variable is small. By summing the product of the differences over all the sample pairs, 
the sum should give some indication whether there is a positive, negative, or no associa-
tion in the data. If all the products are positive (negative), the sum will be a large positive 
(negative) value. If there is no overall tendency, the positive terms in the sum will 
tend to cancel out with the negative terms in the sum, driving the value of the sum 
toward 0.

However, the value of the sum of the products depends on the magnitude of the 
data. Since we want the maximum value of our measure to be 1, we must do something 
to remove the dependence of the measure on the magnitude of the values of the vari-
ables. If we divide the measure by something refl ecting the variability in the X and Y 
variables, this should remove this dependence. The actual formula for r, refl ecting these 
ideas, is
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Dividing the numerator and denominator of this formula by n − 1 enables us to rewrite 
the formula in terms of familiar statistics — that is,
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In this version, we used the formula for the sample variance — that is, s x xx i
2 2= −( )Σ

n −( )1 . The sample variance can also be expressed as s x x x x nx i i
2 1= −( ) −( ) −Σ . 

Hence, the sample variance could also be said to measure how X varies with itself. The 
numerator looks very similar to this, and it measures how the variables X and Y covary.

The denominator, s sx y
2 2* , standardizes r so that it varies from −1 to +1. For example, 

if Y = X, then the numerator becomes Σ x x ni −( ) −2 1— that is, s2
x, which is the same 

as the denominator, and their ratio is +1.

For the data shown in Figure 3.12 the correlation coeffi cient turns out to be 0.025, 
confi rming our earlier statement of a very slight positive relationship between serum 
creatinine and systolic blood pressure.

Example 3.18

We consider the following data on diastolic and systolic blood pressure readings for 
12 adults.

Systolic blood pressure: 120 118 130 140 140 128 140 140 120 128 124 135
Diastolic blood pressure:  60  60  68  90  80  75  94  80  60  80  70  85

We fi rst use a scatter plot of systolic blood pressure versus diastolic blood pressure 
(shown in Figure 3.19) to get a feel for the data. The jittering is added in the plot to 

Figure 3.19 Scatter plot of systolic blood pressure versus diastolic blood pressure.
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62  Descriptive Methods

show the identical values for four adults. By adding vertical and horizontal lines 
showing the mean diastolic and mean systolic blood pressures, we can partition the 
scatter plot into four quadrants. Because most of the data cluster in the upper right 
and lower left quadrants, we expect that there will be a very strong correlation 
between these two variables.

The calculated correlation coeffi cient is 0.894, showing a strong positive 
association.

The correlation coeffi cient is not a general purpose measure of association, but it 
measures linear association — that is, the tendency of the (xi, yi) pairs to lie on a straight 
line. The following example demonstrates this point.

Example 3.19

For this example we consider the following values of Y and X:

 Y: 4 1 0 1 4
X:  −2  −1  0  1  2

The sample mean of Y is 2, and the sample mean of X is 0. The pieces required to 
calculate r are

          Y X (Y − 2) * (X − 0) = product (Y − 2)2 (X − 0)2

          4 −2 2 * −2 = −4 4 4
          1 −1 −1 * −1 =  1 1 1
          0  0 −2 *  0 =  0 4 0
          1  1 −1 *  1 = −1 1 1
          4  2 2 *  2 =  4 4 4

Total 10  0 0  0   0 14 10

The estimated Pearson correlation coeffi cient, r, is then 0 14 10 0∗ = .  There is 
no linear association between Y and X. However, note that the fi rst column (values of 
Y) and the last column (X 2) are the same. Hence, there is a perfect quadratic (squared) 
relation between Y and X that was not found by the Pearson correlation coeffi cient. 
The scatter plot in Figure 3.20 graphically shows this relationship. Connecting these 
points gives the parabola shape associated with a quadratic relationship.

Thus, even if r is 0, it does not mean that the two variables are unrelated; it means 
that there is no linear relation between the two variables. The use of a scatterplot 
fi rst, followed by the calculation of r, may fi nd the existence of a nonlinear associa-
tion that could be missed when r alone is used.
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Figure 3.20 Scatter plot for the data in Example 3.20.

3.7.2   Spearman Rank Correlation Coeffi cient

The Pearson correlation coeffi cient was designed to be used jointly with normally dis-
tributed variables. However, it is used, sometimes incorrectly, with all types of data in 
practice. Instead of using the Pearson correlation coeffi cient with nonnormally distrib-
uted variables, it may be better to use a modifi cation suggested by Spearman, an infl u-
ential British psychometrician, in 1904. Spearman suggested ranking the values of Y 
and also ranking the values of X. These ranks are then used instead of the actual values 
of Y and X in the formula for the sample Pearson correlation coeffi cient. The result of 
this calculation is the sample Spearman rank correlation coeffi cient, denoted by rs. In 
addition to being used with nonnormal continuous data, the Spearman rank correlation 
coeffi cient can also be used with ordinal data.

When ranking the data, ties (two or more subjects having exactly the same value of 
a variable) are likely to occur. In case of ties, the tied observations receive the same 
average rank. For example, if three observations of X are tied for the third smallest 
value, the ranks involved are 3, 4, and 5. The average of these three ranks is 4, and that 
is the rank that each of the three observations would be assigned. The occurrence of 
ties causes no problem in the calculation of the Spearman correlation coeffi cient when 
the Pearson formula is used with the ranks.

Example 3.20

Let us calculate the Spearman rank correlation coeffi cient for the data used in 
Example 3.19. The values of systolic and diastolic blood pressure values and their 
respective rankings are shown here. Note that there are several ties in ranking and 
average rankings are given.
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 SBP DBP

Value Rank Value Rank

120 2.5 60 2
118 1.0 60 2
130 7.0 68 4
140 10.5 90 11
140 10.5 80 8
128 5.5 75 6
140 10.5 94 12
140 10.5 80 8
120 2.5 60 2
128 5.5 80 8
124 4.0 70 5
135 8.0 85 10

The calculated rs is 0.866, slightly less than the Pearson correlation coeffi cient of 
0.894.

See Program Note 3.6 on the website for calculation of Pearson and Spearman correla-
tion coeffi cients.

Conclusion
In this chapter we presented tables, graphs, and plots, as well as a few key statistics. 
The pictures and statistics together enable one to describe single variables and the rela-
tionship between two variables for the sample data. Although the description of the 
sample data and the provision of estimates of the population parameters are important, 
sometimes we wish to go beyond that — for example, to give a range of likely values 
for the population parameters or to determine whether or not it is likely that two popula-
tions under study have the same mean. Doing this requires the use of probability dis-
tributions, a topic covered in a subsequent chapter.

EXERCISES

3.1 Create a bar chart of the following data on serum cholesterol for non-Hispanic 
whites based on Table II-42 in Nutrition Monitoring in the United States (Life 
Sciences Research Offi ce 1989)

Gender Age N Mean Serum Cholesterol (mg/dL)a

Male 40–49 572 223.5
 50–59 575 228.9
 60–69 1354 226.2
 70–74 427 215.8
Female 40–49 615 218.5
 50–59 649 243.6
 60–69 1487 249.0
 70–74 533 248.3
aThese data are from the Second National Health and Nutrition Examination 
Survey of noninstitutionalized persons conducted during the 1976–1980 period 
(NCHS 1981)
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 A high value of serum cholesterol is thought to be a risk factor for heart disease. 
The National Cholesterol Education Program (NCEP) of the National Institutes 
of Health in 1987 stated that the recommended value for serum cholesterol is 
below 200  mg/dl, and a value between 200 and 240 is considered to be the 
borderline. A value above 240 may indicate a problem, and NCEP recom-
mended that a lipoprotein analysis should be performed. Based on these data, 
it appears that many non-Hispanic whites have serum cholesterol values that 
are too high, particularly women. The medical literature is also fi nally begin-
ning to recognize that homocysteine is a very important risk factor for heart 
disease, even among people with normal levels of serum cholesterol (http://
www.quackwatch.org/03HealthPromotion/homocysteine.html).
a. Give some possible reasons why non-Hispanic white males have higher 

mortality from heart and cerebrovascular diseases when it appears from 
these data that non-Hispanic white females should have the higher rates.

b. Provide a possible explanation why the serum cholesterol values for older 
males are lower than for the younger males and the reverse is true for 
females.

3.2 Create line graphs for the following expenditures for the Food Stamps Program 
in New York State during the 1980s.

Year Actual Expenditures (in millions of dollars) Infl ation-adjusted Expendituresa

1980 745.3 745.3
1981 901.2 814.1
1982 835.7 717.3
1983 930.9 766.8
1984 904.4 709.3
1985 939.4 712.2
1986 926.5 685.3
1987 901.8 638.7
1988 909.1 613.4
1989 964.7 616.4
aExpenditures adjusted for infl ation using the consumer price index for the Northeast 
Region with 1980 as the base.
Source: Division of Nutritional Sciences, 1992

 What, if any, tendencies in the expenditures (both actual and infl ation-adjusted) 
do you see? Which expenditures data do you think should be used in describing 
the New York State Food Stamps Program? Explain your choice.

3.3 Use line graphs to represent the short-stay hospital occupancy rates shown 
here.

 Hospital Ownership

Year Federal Nonprofi t Proprietary State/Local

1960 82.5 76.6 65.4 71.6
1970 77.5 80.1 72.2 73.2
1975 77.6 77.4 65.9 69.7
1980 77.8 78.2 65.2 70.7
1985 74.3 67.2 52.1 62.8
1989 71.0 68.8 51.7 64.8

Source: NCHS, 1992

 Discuss the trends, if any, in these data.
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3.4 Based on DIG200 data on the Web, explore prevalence of hypertension (variable 
name: HYPERTEN) by age, sex, and race, using appropriate descriptive tools 
you learned in Chapter 3. Present and discuss your fi ndings, offering possible 
explanations for your fi ndings and suggesting ways to conduct further study on 
the subject.

3.5 The following data on hazardous government jobs appeared as a bar chart in 
the “USA SNAPSHOTS” section of USA Today on April 30, 1992. The variable 
shown was the number of assaults suffered by federal offi cers based on 1990 
FBI fi gures. The least number of assaults suffered were by the Internal Revenue 
Service (three assaults), the Bureau of Indian Affairs (fi ve assaults), and the 
Postal Inspectors (six assaults). The most assaults were suffered by the Immi-
gration and Naturalization Service with 409, followed by U.S. attorneys with 
269 and the Bureau of Prisons with 185 assaults. What additional information 
do you need to conclude anything about which federal offi cers have the more 
hazardous — from the perspective of assaults — jobs?

3.6 A study was performed to determine which of three drugs was more effective 
in the treatment of a health problem. The responses of subjects who received 
each of three drugs (A, B, and C) were provided by Cochran (1955). The fol-
lowing shows the pattern of response for the 46 subjects:

             Response to

A B C Frequency

yes yes yes 6
yes yes no 16
yes no yes 2
yes no no 4
no yes yes 2
no yes no 4
no no yes 6
no no no 6

 Total        46

a. Give an example of a type of health problem that would be appropriate for 
this study.

b. Create a two-way frequency table showing the relationship between drugs 
A and C. Does it appear that the responses to these drugs are related?

c. Create a bar chart that shows the number of subjects with a favorable 
response by drug.

3.7 Using the data shown in Table 3.1, calculate the coeffi cient of variation for body 
mass index. Do you think that any measure of central tendency adequately 
describes these data? Explain your answer.

3.8 Lee (1980) presented survival times in months from diagnosis for 71 patients 
with either acute myeloblastic leukemia (AML) or acute lymphoblastic 
leukemia (ALL).

AML patients:
18 31 31 31 36 01 09 39 20 04 45 36 12 08 01 15 24 02 33 29 07 00 01 02 12 09 01 01 09 05 27 01 13 01 
05 01 03 04 01 18 01 02 01 08 03 04 14 03 13 13 01

ALL patients:
16 25 01 22 12 12 74 01 16 09 21 09 64 35 01 07 03 01 01 22
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a. Calculate the sample mean and median for both AML and ALL patients 
separately. Which measure do you believe is more appropriate to use with 
these data? Explain.

b. Create box plots, histograms, and stem-and-leaf plots to show the distribu-
tions of the survival times for AML and ALL patients. Which type of fi gure 
is more informative for these data? Which type of patient has the longer 
survival time after diagnosis?

c. Give examples of additional variables that are needed in order to interpret 
appropriately these survival times.

3.9 Is it possible to calculate the mean occupancy rate for the short-stay hospitals 
in 1960 given the data provided in Exercise 3.3? If it is, calculate it. If not, state 
why it cannot be calculated.

3.10 Provide an appropriate summarization of the following data on the results of 
inspections of food establishments (e.g., food processing plants, food ware-
houses, and grocery stores) conducted by the Division of Food Inspection Ser-
vices of the New York State Department of Agriculture and Markets.

 Number Inspected Approximate Number Failed

Year Upstate NYC & LIa Upstate NYC & LI

1980 19,599 23,676 2,548 5,209
1982 17,183 22,767 3,093 6,830
1984 13,731 18,677 2,746 6,350
1986 10,915 15,948 2,292 6,379
1988 13,614 15,070 3,267 6,179
1990 12,609 16,285 3,026 6,677
aNew York City and Long Island
Source: Division of Nutritional Sciences, 1992

 Do you think that there were more or fewer cases of foodborne illness in New 
York State in 1990 than in 1980?

3.11 Diagnosis Related Groups (DRGs) are used in the payment for the health care 
of Medicare-funded patients. In the creation of the DRGs, suppose that the 
lengths of stay for 50 patients in one of the proposed groups were the 
following:

1  1  2  2  2  2  2  2  3  3  3  4  4  4  5  5  5  5  6  6
6  7  7  8  8  8  9  9 10 12 13 15 15 17 17 18 19 19 20 23
26 29 31 34 36 43 49 52 67 96

 Calculate the mean, standard deviation, coeffi cient of variation, and the fi ve key 
percentiles for these data. Are these data skewed? Do the patients in this DRG 
appear to have homogeneous lengths of stay? Which measures, if any, should 
be used in the description of these data? Explain your answer.

3.12 The following data represent bacteria counts measured in water with levels of 
0, 1, and 3% sodium chloride. The counts are the number per milliliter.
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a. Calculate the mean and the coeffi cient of variation for these data.
b. Calculate the median and the geometric mean.
c. Comment on which measure of central tendency is appropriate for these 

data.
3.13 Of the estimated 1,488,939 male residents of Harris County, Texas, in 1986, 

there were 8,672 deaths. Of the 1,453,611 female residents, there were 6,913 
deaths. The estimated 1986 U.S. population was approximately 48.7 percent 
male and 51.3 percent female.
a. Calculate the crude death rate and the sex-specifi c death rates for Harris 

County in 1986.
b. Do you believe that a sex-adjusted death rate will be very different from the 

crude death rate? Provide the reason for your belief.
c. Calculate a sex-adjusted death rate for Harris County in 1986.

3.14 The Pearson correlation coeffi cient between age and creatinine for the data in 
Table 3.1 was 0.319. This suggests a modest linear relation between these two 
variables.
a. Create a scatter plot of protein per age and creatinine. Is there a linear rela-

tionship? Are there any observations that clearly deviate from the linear 
trend?

b. Calculate the Pearson correlation coeffi cient, ignoring the one or two obser-
vations that are considered to be outliers. Which measure of correlation do 
you think best characterizes the strength of the relation?

3.15 The U.S. population (in 1000) in 1980 and 2000 are shown below by ethnic 
groups:

Level of Sodium Chloride Counts

0% 107, 106, 108, 109, 108, 1010

1% 104, 104, 105, 106

3% 103, 104, 104, 103, 105

Ethnic Groups 1980 2000

White 194,811 229,086
Black/African American 25,531 36,594
American Indian/Alaskan Native 1,420 2,984
Asian/Pacifi c Islander 3,729 11,757

Source: U.S. Bureau of the Census, 2000

a. Calculate the annual growth rate, and show which group grew the fastest.
b. Project the population in 2015 by ethnic group, assuming the growth rate 

remains constant over time.
c. When will the 2000 population be doubled if the growth rate remains 

constant?
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