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In this chapter we present logistic regression, a method for examining the relationship 
between a dependent variable with two levels and one or more independent variables. 
Logistic regression represents another application of the linear model idea used in the two 
previous chapters. We also provide an introduction to proportional hazards regression (or 
Cox’s regression). Proportional hazards regression is an extension of the survival analysis 
method presented in Chapter 11, and it also uses the linear model approach.

14.1   Simple Logistic Regression
Joseph Berkson did much to advance the use of logistics in the 1940s and 1950s (Berkson 
1944; 1951). However, it was D. R. Cox (1969) who popularized the logit transformation 
for modeling binary data. Since the 1980s, logistic regression has become one of the 
more widely used analysis techniques in public health and the biomedical sciences 
because it allows for an examination of the relation between disease status (presence or 
absence) and a set of possible risk factors for the disease based on data from cross-
sectional, case-control, or cohort studies.

Let’s consider a simple example to introduce the topic because it allows us to show 
the logistic regression in terms of statistics that we already know.

14

Example 14.1

Suppose that we wish to determine whether or not there is a relationship between a 
male’s pulmonary function test (PFT) results and air pollution level at his residence 
— lead in the air serving as a proxy for overall air pollution. The data for this situa-
tion are shown in Table 14.1 (Forthofer and Lehnen 1981).
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388  Logistic and Proportional Hazards Regression

We cannot use ordinary linear regression for this situation because the dependent 
variable — PFT results categorized as normal or nonnormal — has only two levels, 
and, hence, the assumption of a continuous and normally distributed dependent vari-
able does not hold. We can use categorical data analysis, since the independent 
variable, lead level categorized as low or high, is discrete. More generally, if there 
were several independent variables, some of which were continuous, then the cate-
gorical data approach would no longer be appropriate.

One categorical data approach is to compare the odds of having a normal PFT 
between those exposed to low and those exposed to high levels of air pollution — that 
is, to calculate the odds ratio and then test the hypothesis that the odds ratio is equal 
to one. In the following, we shall consider the relation between logistic regression 
and the odds ratio.

In logistic regression the underlying model is that the natural logarithm, written 
as ln, of the odds of a normal (or nonnormal) PFT is a linear function of a constant 
and the effect of lead pollution. The logarithm of the odds is also referred to as the 
log odds or logit. In this example, a larger logit value indicates a more favorable 
outcome because it indicates a greater proportion of males having a normal PFT. 
Hence those with low exposures to lead (logit = 2.964) have a more favorable 
outcome than those with higher exposure to lead (logit = 2.104) for this sample.

This model is
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where pi1 is the probability of a normal PFT and pi2 is the probability of a nonnormal 
PFT for the ith lead level. The ratio of pi1 to pi2 is the odds of a normal PFT for the 
ith level of lead.

Substituting symbols for all the terms in the preceding equation yields
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where m represents the constant and ai is the effect of the ith level of lead. This model 
has the same structure that we used in the ANOVA where we are measuring the 
effect of the levels of a variable from a reference level. For the lead variable, we 
consider the high level of pollution to be the reference level. This means that a2 is 

Table 14.1 Pulmonary function test results by ambient air pollution.

 Pollution (Lead) Level

Pulmonary Function Test Results Low High

Normal 368 82
Abnormal 19 10

Total 387 92

Proportions Normal 0.9509 0.8913
Odds (normal) 19.367 8.200
Logits (normal) 2.964 2.104
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Simple Logistic Regression  389

14.1.1   Proportion, Odds, and Logit

Before proceeding with the extension of the logistic regression model to multiple inde-
pendent variables, it is helpful to examine the relationship between probabilities (pi), 
odds [oi = pi/(1 − pi)] and logits [li = ln(oi)] shown in Table 14.2.

Note that when the probability is 0.5, the odds equal 1 or are even. As the probabilities 
increase toward 1, the odds increase quite rapidly. As the probabilities decrease toward 
0, the odds also approach 0. When the odds equal 1, the logit is 0. As the odds decrease 
below 1, the logit takes a negative value, approaching negative infi nity. As the odds 
increase above 1, the logit takes a positive value, approaching positive infi nity.

The relationship between probabilities and logits is graphically shown in Figure 14.1. 
The relationship is essentially linear for probabilities between 0.3 and 0.7 and nonlinear 

taken to be 0 and that m is the logit for the high lead level as can be seen from the 
following two equations:
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It is clear from the second of these two equations that m is the logit of a normal PFT 
for those exposed to the high lead pollution level. If we subtract the second equation 
from the fi rst, we see that a1 is simply the difference of the two logits — that is,
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Since the difference of two logarithms is the logarithm of the ratio, we have
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Thus, a1 is the natural logarithm of the odds ratio, and this is one of the reasons that 
logistic regression is so useful. In this example, the estimate of a1 is 0.860 and the 
estimate of m is 2.104. If we take the exponential of the estimate of a1, we obtain the 
value 2.362, the estimated odds ratio. This value is much greater than one, and it 
strongly supports the idea that those with the lower lead exposure have the greater 
proportion of a normal PFT. The estimate of the constant term is the logit for the 
high level of lead, and the exponential of the estimate of m is 8.2, the odds of a normal 
PFT result for those with high lead exposures. Thus the logistic regression model 
leads to parameters that are readily interpretable.

Table 14.2 A comparison of probabilities, odds, and log odds (logits).

Probabilities (p i) 0.01 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99
Odds (oi) 0.01 0.11 0.25 0.43 0.67 1.00 1.50 2.33 4.00 9.00 99.00
Logits (li) −4.59 −2.20 −1.39 −0.85 −0.41 0.00 0.41 0.85 1.39 2.20 4.59

Ch014-P369492.indd   389 11/4/2006   11:28:48 AM



390  Logistic and Proportional Hazards Regression

for lower and greater probabilities. A unit change in the logit results in greater differ-
ences in probabilities at levels in the middle than at high and low levels.

Manipulating the formula for the odds allows us to express probabilities in terms of 
odds
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.  (14.2)

Since oi = exp(li), we can also express probabilities in terms of logits
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This expression for the probability is one that is often seen in the literature when dealing 
with logistic regression.

14.1.2   Estimation of Parameters

Example 14.1 showed that the estimation of parameters for the case where both the 
outcome variable and the exposure variable have two levels is quite simple. However, 
the estimation of parameters in logistic regression becomes more complex when we 
incorporate continuous independent variables and discrete variables with multiple levels 
in the model.

It turns out that the least squares estimation procedure doesn’t yield the best estimates 
for the parameters in logistic regression. Instead of least squares, logistic regression 
uses the maximum likelihood procedure to obtain the parameter estimates. The maximum 
likelihood approach fi nds estimates of the model parameters that have the greatest likeli-
hood of producing the observed data. The estimation procedure usually begins with the 
least squares estimates of coeffi cients and then uses an iterative algorithm to succes-
sively fi nd new sets of coeffi cients that have higher likelihood of producing the observed 
data. Computer programs typically show the number of iterations required to fi nd the 
estimated coeffi cients with the greatest likelihood. However, it is beyond the scope of 

Figure 14.1 Plot of 
probabilities versus 
logits.
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Simple Logistic Regression  391

this book to provide the details of the estimation. For more information on logistic 
regression, see the excellent book by Hosmer and Lemeshow (1999a).

14.1.3   Computer Output

The following two examples are applications of logistic regression with a single inde-
pendent variable. In the fi rst example, the independent variable has only two levels, 
whereas in the second example, the independent variable is continuous.

Example 14.2

Table 14.3 presents a summary of the computer output for a logistic regression analy-
sis of the data used in Example 14.1 (see Program Note 14.1 on the website).

The estimates for the intercept and the effect of the low lead level are 2.104 and 
0.860, respectively. These estimates are the same as in Example 14.1. Table 14.3 also 
shows the standard errors for the coeffi cients, test statistics, p-value, and confi dence 
interval for the odds ratio. These will be explained in the next section.

Table 14.3 Estimates resulting from the fi tted logit model for the PFT data in Table 14.1.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept 2.104 0.335 6.28 <0.001 — —
Lead (low) 0.860 0.409 2.10 0.036 2.362 (1.06, 5.27)

Likelihood ratio: chi-square = 4.025, df = 1, p-value = 0.045

Example 14.3

We want to explore the relationship between diabetes (presence or absence) and body 
mass index (BMI) using individuals from the DIG200 dataset. In the DIG200 dataset, 
BMI is a continuous variable and will serve as the independent variable. The sym-
bolic representation of this model is

ln
π

π
β β

1
0 1 1−( ) = + x

where x1 represents the value of the BMI. For simplicity we rounded the values of 
BMI to the nearest whole number. The results of fi tting the logistic regression model 
are shown in Table 14.4. See Program Note 14.1 on the website for fi tting this 
model.

The fi tted logit model is

ln
ˆ

ˆ
. . .

π
π1

3 034 0 075 1−( ) = − + x

In the following example, we consider the case with a continuous covariate in the 
model.
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392  Logistic and Proportional Hazards Regression

14.1.4   Statistical Inference

In this section we are interested in examining if a signifi cant relationship exists between 
the dependent variable and independent variable(s) contained in the logistic model. The 
two tests commonly used in the tests of hypotheses in logistic regression are the Wald 
test and the likelihood ratio test (LRT). We are interested in testing the null hypothesis 
that the coeffi cient of the independent variable is equal to zero versus the alternative 
hypothesis that the coeffi cient is nonzero — that is,

 H0: b1 = 0 versus Ha: b1 ≠ 0.

We begin with the Wald test.

The test statistic for the Wald test is obtained by dividing the maximum likelihood 
estimate (MLE) of the slope parameter b̂1 by the estimate of its standard error, se 
(b̂1). Under the null hypothesis, this ratio follows a standard normal distribution.

This estimated equation means that for a 1  kg/m2 increase in BMI, the log odds of 
having diabetes increases by 0.075 units. However, a 5  kg/m2 increase in BMI may 
be more meaningful than a change of 1  kg/m2. A 5  kg/m2 increase in BMI increases 
the log odds by 0.375 (= 5 * 0.075) units. The estimated change in the odds is easily 
calculated by exp(0.375) = 1.45. This value means that the estimated odds of diabetes 
increases by 45 percent for every 5  kg/m2 increase in BMI.

Table 14.4 Estimates resulting from the logistic regression analysis of diabetes on body mass 
index, DIG200.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept −3.034 0.893 −3.40 0.001 — —
BMI 0.075 0.032 2.35 0.019 1.08 (1.01, 1.15)

 Log-Likelihood: Intercept only −116.652
  BMI term added −113.851

Likelihood ratio: chi-square = 5.602, df = 1, p-value = 0.018

Example 14.4

Let us reexamine the material from Example 14.2. As shown in Table 14.3, the value 
of b̂1 is 0.860 and se (b̂1) is 0.409. Therefore, the Wald test statistic is calculated as 
follows:

ˆ

ˆ
.

.
. .

β
β
1

1

0 860

0 409
2 10

se( )
= =

If the null hypothesis is true, this statistic follows the standard normal distribution. 
The p-value for this test is 0.036 [= 2  *  Prob(Z > 2.10)], suggesting that b1 is signifi -
cantly different from zero at the 0.05 level. These values are shown in Table 14.3.

We can use the confi dence interval for the odds ratio to determine whether or not 
the odds ratio equals one. If the confi dence interval does not contain one, then we 
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The LRT is used to test the hypothesis that an independent variable is zero. The LRT 
test statistic is

 
χLR

2 2= − ln
Likelihood of the reduced model

Likelihood of the full modeel
⎛
⎝

⎞
⎠  (14.4)

a quantity that follows the chi-square distribution under the null hypothesis. The degrees 
of freedom for the chi-square distribution is the difference between the number of 
parameters in the full model and the number of parameters in the reduced model. In the 
simple case of only one covariate in the model, the null hypothesis is that the covariate’s 
coeffi cient is equal to zero. Although the Wald test’s p-values are commonly reported, 
we recommend the use of the p-values from the likelihood ratio test (Hauck and Donner 
1977; Jennings 1986). The following example demonstrates the use of the LRT.

conclude that the odds ratio is statistically signifi cant. The use of the confi dence 
interval is equivalent to testing the hypothesis that b1 = 0. The 100 * (1 − a) percent 
confi dence interval for the odds ratio [exp(b1)] is calculated by

[exp{b̂1 − z1−a /2 ⋅ se(b̂1)}, exp{b̂, + z1−a /2 ⋅ se(b̂1)}].

Using the estimates in Table 14.3, the 95 percent confi dence interval for the odds 
ratio is

[exp{0.860 − 1.96 * (0.409)}, exp{0.860 + 1.96 * (0.409)}]

or from 1.059 to 5.269. Since the interval does not contain one, the odds ratio is 
considered to be statistically signifi cant at the 0.05 level. Note that the confi dence 
interval for the odds ratio is not symmetric around the sample estimate. We also did 
not use the usual approach and base the confi dence interval on the estimated odds 
ratio itself and its estimated standard error because the estimated odds ratio does not 
follow a normal distribution.

Example 14.5

Let us revisit the results of the logistic model for the BMI data shown Table 14.4 in 
Example 14.3. We wish to determine whether or not there is a signifi cant relationship 
between the independent variable BMI and the presence or absence of diabetes. We 
shall test the hypothesis of no relationship at the 0.05 level. In symbols, the hypo-
thesis is

H0  :  b1 = 0 versus Ha  :  b1 ≠ 0.

We begin with the model containing only the constant term and compare it to a 
model containing both the constant and the BMI variable. The log of the likelihood 
for the constant only model is −116.652, and the log of the likelihood for the model 
with the BMI variable is −113.851. The test statistic is found by applying Equation 
(14.4) — that is,

X 2
LR = −2[ln(likelihood of reduced model) − ln(likelihood of full model)]
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394  Logistic and Proportional Hazards Regression

14.2   Multiple Logistic Regression
Regression models are useful because they help us explore the relationships between a 
dependent or response variable and one or more independent or predictor variables of 
interest. In particular, logistic regression models allow medical researchers to help clini-
cians in the choice of an appropriate treatment strategy for individual patients.

14.2.1   Model and Assumptions

In the previous section we introduced the simple logistic regression model with only 
one independent variable. For multiple logistic regression with k independent variables, 
x1, x2,  .  .  .  , xk, the model, taking the form of Equation (14.3), is

 
π β β β β

β β β β
= + + + +( )

+ + + + +( )
exp . . .

exp . . .
.0 1 1 2 2

0 1 1 2 21

x x x

x x x
k k

k k

 (14.5)

By obtaining estimates for the betas in the linear combination, b0 + b1x1 +  .  .  .  + bkxk, 
we can calculate the estimated or predicted probability of the outcome of interest.

We present two examples here. The fi rst example includes discrete independent 
variables only, whereas the second example has both discrete and continuous indepen-
dent variables.

= −2   *  [−116.652 − (−113.851)] = −2  *  (−2.801), which is 5.602. There is one degree 
of freedom for this test of hypothesis because the full model contains only one 
covariate and the reduced model does not contain any covariates. In this case, the 
p-value for a chi-square value of 5.602 with one degree of freedom is 0.018. There-
fore, we reject the null hypothesis and conclude that b1 is signifi cantly different from 
zero — that is, the occurrence of diabetes is related to the BMI variable at the 0.05 
level.

Example 14.6

We reconsider Example 14.1 and now introduce a covariate. In the example, we found 
a signifi cant lead effect, a fi nding that is somewhat surprising, since lead has not 
been shown to have a negative impact on the respiratory system in other studies. 
However, during the period 1974–1975 when this study was performed, automobile 
emissions were a major source of lead pollution. Thus, a possible explanation for this 
fi nding is that lead pollution is serving as a proxy for nitrogen dioxide or other pol-
lutants that have adverse respiratory effects. Another possible explanation is that we 
have not controlled for possible confounding variables. Smoking status is a key vari-
able that has been ignored in the analysis so far. Table 14.5 shows the smoking status 
by lead level and PFT result.

We begin by considering a model containing the main effects of lead and smoking. 
Because smoking status contains four levels, we must create three dummy variables 
in order to obtain a symbolic representation of this model. The dummy variables can 
be expressed as shown in Table 14.6.
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We will use the heavy smoking status as the reference category and measure the 
effects of the other smoking categories from it. Thus, the dummy variable D1 is 1 
when the smoking status is light and 0 otherwise, D2 is 1 when the smoking status 
is former and 0 otherwise, and D3 1 when the smoking status is never and 0 other-
wise. Statistical software packages can create these dummy variables for the user 
(see Program Note 14.2 on the website for more details).

Therefore, the estimated logit can be expressed as

ln
ˆ

ˆ
ˆ ˆ ˆ ˆ ˆ .

π
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β β β β βi

i
i i i ix D D D
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The estimated values of the logit model’s parameters are the following:
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The addition of the smoking variable has not changed the parameter estimates much. 
The estimate of the constant was previously 2.104 (versus 2.18 now), and the previous 
estimate of the low lead effect was 0.860 (versus 0.84 now).

In this situation, the estimate of b1 is the natural logarithm of the odds ratio if the 
high and low lead levels had contained the same distributions of the smoking status 
variable. Examination of Table 14.5 shows that the distributions of the smoking status 
variable are similar for the high and low lead levels. Hence it is not surprising that 
the estimates of the odds ratio for high lead levels compared to low lead levels are 
approximately the same for the simple model shown in Table 14.3 and the model 
shown in Table 14.7. Individuals in residences with low lead levels are 2.3 times more 
likely to have normal PFT results compared to individuals in residences with high 
lead levels after adjusting for smoking status.

Table 14.5 Pulmonary function test (PFT) results by smoking status and lead exposure.

 Smoking PFT Results  Proportions Odds Logits
Lead Level Status Normal Abnormal Total Normal (normal) (normal)

Low Heavy 84 3 87 0.9655 28.000 3.332
 Light 75 6 81 0.9260 12.500 2.526
 Former 49 6 55 0.8910 8.167 2.100
 Never 160 4 164 0.9756 40.000 3.689
High Heavy 16 3 19 0.8421 5.333 1.674
 Light 21 2 23 0.9130 10.500 2.351
 Former 12 2 14 0.8571 6.000 1.792
 Never 33 3 36 0.9167 11.000 2.398

Table 14.6 Dummy variables for the smoking status variable.

 Smoking Status D1 D2 D3

Smoking status 0 Heavy 0 0 0
Smoking status 1 Light 1 0 0
Smoking status 2 Former 0 1 0
Smoking status 3 Never 0 0 1

Multiple Logistic Regression  395
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396  Logistic and Proportional Hazards Regression

There is no suggestion that the effect of any of the three levels of the smoking 
variables differ from the effect of the heavy smoking level. The 95 percent confi dence 
intervals for the odds ratios of the smoking effects all contain one, and none of the 
Wald statistics suggest statistical signifi cance at the 0.05 level. The likelihood ratio 
test statistic shown in the output is used to test the hypothesis that all four model 
coeffi cients (the lead effect and the three smoking effects) are simultaneously equal 
to zero. We reject this hypothesis at the 0.05 level. The lead variable still appears to 
be related to the PFT variable. We will explain the other two test statistics later in 
this chapter.

Table 14.7 Estimates for the logit model parameters and odds ratio for the data in Table 14.5.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept 2.178 0.510 4.27 <0.0001 — —
Lead (low) 0.837 0.414 2.03 0.043 2.31 (1.03, 5.20)
Smoke 1a −0.289 0.562 −0.51 0.607 0.75 (0.25, 2.25)
Smoke 2b −0.767 0.567 −1.35 0.176 0.46 (0.15, 1.41)
Smoke 3c 0.508 0.572 0.89 0.375 1.66 (0.54, 5.10)

Likelihood ratio: chi-square = 9.914, df = 4, p-value = 0.042
Goodness of fi t tests: Pearson chi-square = 2.276, df = 3, p-value = 0.517

 Deviance chi-square = 2.256, df = 3, p-value = 0.521
alight smoker; bformer smoker; cnever smoked

Example 14.7

Suppose that we would like to develop a logistic regression model to predict diabetes 
using BMI, treatment, and race using the DIG200 dataset. The literature suggests 
that individuals with larger values of BMI, who are on a placebo, and who are non-
white are more likely to have diabetes. As we did in Example 14.3, we rounded the 
values of BMI to the nearest whole number. Table 14.8 shows information about the 
three predictor variables and the presence or absence of diabetes.

We will consider the placebo level of the treatment variable to be the reference 
level and measure the effect of the digoxin treatment from it. We will also consider 

Table 14.8 Patient characteristics by diabetes 
status, DIG200.

  Diabetes

Characteristics Yes No

Mean BMIa ± SDb 28.0 ± 5.5 26.1 ± 4.6
Range  (18 − 43) (15 − 45)
Treatment: Placebo 34  66
 Digoxin 20  80
Race: White 42 131
 Nonwhite 12  15
aBMI—Body Mass Index rounded to the nearest whole 
number
bSD—Standard Deviation
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the white race to be the reference level and measure the nonwhite effect from it. The 
results of the logistic regression analysis are shown in Table 14.9 (see Program Note 
14.3 on the website).

The fi tted logit model is

ln
ˆ

ˆ
. . . . .

π
π1

2 948 0 081 0 796 0 9041 2 3−( ) = − + − +x x x

From Table 14.9, we see that the odds of having diabetes is higher for larger values 
of BMI even after adjusting for treatment and race. The estimated adjusted odds 
ratios are greater than one for the BMI and race variables, whereas the adjusted odds 
ratio is below one for the treatment variable. This indicates that patients receiving 
digoxin are less likely (specifi cally 45 percent less likely) to have diabetes compared 
to patients on the placebo after adjusting for BMI and race.

All three of the independent variables are statistically signifi cant at the 0.05 level. 
The likelihood ratio chi-square statistic (= 15.47 with three degrees of freedom) 
suggests that the three coeffi cients associated with the independent variables are not 
simultaneously equal to zero at the 0.05 level.

The probability of diabetes given an individual’s BMI, treatment group, and race 
can also be estimated based on the estimated model parameters using Equation 
(14.5)

ˆ
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π i

i i ix x x
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2 948 0 081 0 796 0 904
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As an example let us consider calculating the probability of having diabetes given a 
patient with a BMI of 24  kg/m2, on digoxin treatment, and being of a nonwhite race. 
The calculation is

ˆ
exp . . . .

exp . .
π = − + ( ) − ( ) + ( )[ ]

+ − +
2 948 0 081 24 0 796 1 0 0904 1

1 2 948 0 0881 24 0 796 1 0 904 1
0 290

( ) − ( ) + ( )[ ]
=

. .
. .

Therefore, the odds of diabetes given a patient with a BMI of 24  kg/m2, on digoxin 
treatment, and being nonwhite is [0.290/(1 − 0.290)] = 0.408. We explain the other 
two test statistics in the following sections.

Table 14.9 Logistic regression analysis of diabetes on BMI, treatment, and race, DIG200.

  Standard Wald   95% Confi dence
Variable Coeffi cient Error Statistic p-value Odds Ratio Interval

Intercept −2.948 0.914 −3.22 0.001
BMI (kg/m2) 0.081 0.033 2.45 0.014 1.08 (1.02, 1.16)
Treatment (digoxin) −0.796 0.339 −2.35 0.019 0.45 (0.23, 0.88)
Race (nonwhite) 0.904 0.440 2.05 0.040 2.47 (1.04, 5.85)

Likelihood ratio: chi-square = 15.471, df = 3, p-value = 0.001

Goodness of fi t tests: Pearson chi-square = 44.485, df = 57, p-value = 0.886
 Deviance chi-square = 57.816, df = 57, p-value = 0.445
 H-L chi-square = 2.532, df = 8, p-value = 0.960
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398  Logistic and Proportional Hazards Regression

14.2.2   Residuals

In logistic regression, we can get a feel for how well the model agrees with the data by 
comparing the observed and predicted logits or probabilities for all possible covariate 
patterns. For example, in Example 14.6 the eight possible covariate patterns are listed 
again in Table 14.10 along with observed and predicted logits and probabilities. The 
observed logits and probabilities come from Table 14.5.

Table 14.10 List of covariate patterns for PFT data in Example 14.6.

Covariate Lead Smoking Logit Probability

Pattern Level Status Observed Predicted Observed Predicted

(i) xi D1i D2i D3i li l̂i pi p̂i

1 1 0 0 0 3.332 3.015 0.9655 0.9532
2 1 1 0 0 2.526 2.726 0.9260 0.9385
3 1 0 1 0 2.100 2.248 0.8910 0.9045
4 1 0 0 1 3.689 3.523 0.9756 0.9713
5 0 0 0 0 1.674 2.178 0.8421 0.8982
6 0 1 0 0 2.351 1.889 0.9130 0.8686
7 0 0 1 0 1.789 1.411 0.8571 0.8038
8 0 0 0 1 2.398 2.686 0.9167 0.9362

In multiple linear regression, the residuals provided useful information about possi-
ble problems with the model. We can also use the residuals in logistic regression to 
examine the fi t of the logistic model. Two common forms of residuals used in logistic 
regression are Pearson residuals and deviance residuals. These residuals are useful for 
identifying outlying and infl uential points (Pregibon 1981). The Pearson residual is 
defi ned as

 
r

y n

n
i

i i i

i i i

= −
−( )
ˆ

ˆ ˆ

π
π π1

where ni is the number of observations with the ith covariate pattern, yi is the number 
of observations with the outcome of interest among ni observations, and p̂i is the pre-
dicted probability of the outcome of interest for the ith covariate pattern. The form of 
the Pearson residual is familiar — dividing the difference in the observed and predicted 
cell counts by the standard error of the observed count. We did the same calculations 
in converting statistics to a standard normal variable. Note that we can also express the 
numerator of ri as yi − ŷi, where ŷi is equal to ni p̂i.

Some recommend a slightly different form of the Pearson residual. For example, 
according to Collett (2003), a better procedure is to divide the raw residual, yi − ŷi, by 
its standard error, se(yi − ŷi). This standard error is complicated to derive, but it is used 
in many of the logistic regression programs. Residuals based on the se(yi − ŷi) are known 
as the standardized Pearson residuals.

The deviance residual is defi ned as
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where sgn is plus if the quantity in the parenthesis is positive and negative if the quantity 
is negative.
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Since there are only eight covariate patterns for the PFT data in Example 14.6, we 
can easily show the Pearson and deviance residuals in Table 14.11 (see Program Note 
14.2 on the website).

14.2.3   Goodness-of-Fit Statistics

We can also use the residuals in testing the goodness of fi t of the model. A Pearson test 
statistic can be calculated by summing the squares of the residuals, that is, Σr2

i. A similar 
test statistic based on the deviance residuals is then Σd2

i. If the model fi ts, both of these 
statistics follow a chi-square distribution with degrees of freedom equal to number of 
covariate patterns minus the number of parameters in the model plus one.

Let’s now test the goodness of fi t of the model. The null and alternative hypotheses 
are

 H0: the model fi ts the data versus H â: the model does not fi t the data.

Because we estimated four parameters in the model and there are eight covariate pat-
terns, there are three degrees of freedom for the chi-square test. If we test the hypothesis 
that the model fi ts at the 0.05 level, a value of the test statistic greater than 7.81 is 
required to reject the null hypothesis. Since both test statistics (values of 2.28 and 2.25 
for the Pearson statistic and the deviance statistic, respectively) are smaller than this 
critical value, we fail to reject the hypothesis that the model fi ts.

In logistic situations with continuous independent variables, it is likely that the 
number of distinct covariate patterns will be close to the number of observations. The 
next example considers this situation.

Table 14.11 Pearson and deviance residuals for the 
multiple logistic regression model from Example 14.6.

 Residual

Covariate Pattern Pearson Deviance

1 0.54 0.57
2 −0.47 −0.46
3 −0.34 −0.34
4 0.33 0.34
5 −0.81 −0.75
6 0.63 0.67
7 0.50 0.52
8 −0.48 −0.46

Sum of Squares 2.28 2.25

Example 14.8

We are going to plot the Pearson and deviance residuals by individual for the multiple 
logistic regression model considered for the diabetes data in Example 14.7 (see 
Program Note 14.3 on the website).

Since these residuals have, in effect, been divided by their standard errors — it 
is hard to see that this statement applies to the deviance residuals, but it does — 
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400  Logistic and Proportional Hazards Regression

residuals that have a value greater than two are of interest. Residuals with a value 
greater than two could result because of a coding error or simply represent a rare 
occurrence. We are looking for any patterns in the residuals, similar to the analysis 
of residuals in multiple linear regression. Since there don’t appear to be any large 
residuals in Figure 14.2 or Figure 14.3, it does not appear that any of the observations 
require further inspection. If there were large residuals, we could try other plots such 
as the residuals versus the independent variables as well as doing univariate analysis 
on the original data looking for anomalies.
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Figure 14.2 Pearson residual by subject for the data in Example 14.7.

Figure 14.3 Deviance residual by subject for the data in Example 4.7.
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In some cases, particularly those with continuous independent variables, we prefer 
not to use the Pearson and deviance chi-square statistics to test the fi t of the model. In 
these cases, we believe that other tests — for example, the Hosmer-Lemeshow (H-L) 
goodness-of-fi t test — have better statistical properties (Hosmer and Lemeshow 1999a). 
The H-L procedure groups the data into g categories where g is usually 10. The group-
ing is based on the values of the predicted probabilities from the model. In one approach, 
the data are grouped into equal-sized ordered categories with the fi rst category having 
the subjects with the smallest estimated probabilities and so forth to the last group con-
taining the subjects with the largest estimated probabilities. In another approach sug-
gested by Hosmer and Lemeshow, the categories are formed by specifi c cutpoints — for 
examples, 0.10, 0.20,  .  .  .  , 0.90. The fi rst group contains all subjects with predicted 
probabilities less than or equal to 0.10, the second group contains all subjects with pre-
dicted probabilities greater than 0.10 and less than or equal to 0.20 and so on, to the last 
group that contains all the subjects with predicted probabilities greater than 0.90. The 
H-L test statistic is defi ned as
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where n′k is the number of covariate patterns in the kth group, ok is the number of subjects 
with the condition of interest in the n′k covariate patterns, and p–k is the average predicted 
probability in the kth group. Based on extensive simulations, the H-L statistic follows 
the chi-square distribution with g − 2 degrees of freedom.

Let’s now test the goodness-of-fi t of the logistic model used in Example 14.7 at the 
0.05 level. We will use the fi rst method of grouping — that is, dividing the data into 10 
equal-sized categories. As shown in Table 14.9, the H-L test statistic is 2.532 with 8 
degrees of freedom. Since the H-L statistic is less than the critical value of 15.51, we 
fail to reject the goodness of fi t of the model at the 0.05 level.

14.2.4   The ROC Curve

Another measure of how well a logistic regression model performs can be obtained by 
examining the area under the receiver operating characteristic (ROC) curve, originally 
presented in Chapter 4, for that model. Recall that the ROC curve is created by plotting 
1-specifi city against sensitivity at different cutoff points for determining a positive or 
negative test result. In the logistic model, the sensitivity and specifi city can be evaluated 
at different levels of predicted probabilities by comparing the predicted classifi cation 
with the observed classifi cation of the dependent variable. The area under the ROC curve 
provides a measure of the discriminative ability of the logistic model. Hosmer and 
Lemeshow (1999a) suggest the following guidelines for assessing the discriminatory 
power of the model:

If the area under the ROC curve (AUROC) is 0.5, the model does not discriminate.
If 0.5 < AUROC < 0.7, the model has poor to fair discrimination.
If 0.7 < AUROC < 0.8, the model has acceptable discrimination.
If 0.8 ≤ AUROC < 0.9, the model has excellent discrimination.
If AUROC ≤ 0.9 — a very rare outcome — the model has outstanding 

discrimination.

Multiple Logistic Regression  401

Ch014-P369492.indd   401 11/4/2006   11:28:49 AM



402  Logistic and Proportional Hazards Regression

Example 14.9

Let’s consider the logistic regression model including lead levels and smoking status 
as predictors of the PFT results shown in Example 14.6 to see how we create the 
ROC curve. As shown in Table 14.10, there are eight predicted probabilities in this 
example and we can evaluate sensitivity and specifi city at eight different cutoff 
points. At the lowest predicted probability of 0.8038 (high lead level and former 
smoker), the predicted PFT status is determined to be “normal” if the predicted 
probabilities are greater than or equal to 0.8038. The 2 by 2 table shown here can be 
formed from the cross-tabulation of the data in Table 14.5 by the predicted and 
observed PFT status. Sensitivity and specifi city are calculated from the table using 
the procedure explained in Chapter 4:

Predicted Observed PFT Status

PFT Status Normal Abnormal

Normal 450 29 Sensitivity = 450/450 = 1.00
Abnormal  0  0 Specifi city = 0/29      = 0.00

Total 450 29

Similarly, we can evaluate sensitivity and specifi city at the second lowest predicted 
probability of 0.8686 (high lead level and light smoker) as follows:

Predicted Observed PFT Status

PFT Status Normal Abnormal

Normal 438 27 Sensitivity = 438/450 = 0.973
Abnormal  12  2 Specifi city = 2/29 = 0.069

Total 450 29

For the rest of the cutoff points the sensitivity and specifi city are

Cutoff Point Sensitivity Specifi city

0.8982 0.927 0.138
0.9045 0.891 0.241
0.9363 0.782 0.448
0.9385 0.709 0.552
0.9532 0.542 0.759
0.9713 0.356 0.862
1.0000 0.000 1.000

From these data the ROC curve can be plotted. We can use a computer program to 
create the ROC curve and calculate AUROC, as shown in Figure 14.4 (see Program 
Note 14.2 on the website).

AUROC can be interpreted as the likelihood that an individual who has a non-
normal PFT result will have a higher predicted probability of having a nonnormal 
PFT than an individual who does not have a nonnormal PFT result (Pregibon 1981). 
The AUROC value for this example is approximately 0.68, a value suggesting poor 
to fair discrimination.
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Many programs also report a pseudo-R2. Statisticians tend to give less attention to 
this measure because it may suggest the model has poor explanatory power, whereas 
other measures such as the AUROC suggest good discriminatory power. The goodness-
of-fi t tests, the examination of residuals, and the AUROC are three tools with good 
acceptance by statisticians for examining multiple logistic regression models.

We have provided a few of the numerous diagnostic tools available to the researcher 
for examining the logistic regression model. The use of additional plots and many other 
statistics shown in Chapter 13 for examining the fi t of the model carry over to logistic 
regression. To learn more about the application of these other tools, the reader is encour-
aged to check other sources on logistic regression (Hosmer and Lemeshow 1999; Pregi-
bon 1981). However, we should not automatically delete those subjects identifi ed using 
these diagnostic methods. Any elimination of subjects must be done very carefully and 
be based on substantive considerations as well as on diagnostic methods.

14.3   Ordered Logistic Regression
In previous sections, we introduced logistic regression models that have a dependent 
variable with a dichotomous outcome. However, more complicated forms of logistic 
regression are also available, and we begin this section by considering an ordinal-
dependent variable with more than two levels.

Area under ROC curve = 0.6782
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Figure 14.4 Plot of ROC curve for the logistic regression model in Example 14.6.

Example 14.10

Let us examine the perceived health status reported in the National Health and Nutri-
tion Examination Survey. The health status is reported as “excellent,” “very good,” 
“good,” “fair,” and “poor.” Based on an NHANES III Phase II adult sample, 23.0 
percent of U.S. adults reported that their health status is “excellent,” 30.3 percent 
“very good,” 31.3 percent “good,” and 15.5 percent for the “fair or poor” categories 
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404  Logistic and Proportional Hazards Regression

combined. We want to determine whether or not there is a relationship between 
health status and the use of vitamin or mineral supplements (1 = use, 0 = nonuse) 
and education refl ected by the number of years of schooling. Note that if a relation-
ship exists, it does not necessarily imply any causal relationship between the vari-
ables we are labeling as independent and the variable we are labeling as dependent. 
It may be that supplement use is a function of health status, or it could be that health 
status is a function of supplement use or there could be a mixture of relationships. 
We can’t tell from these data the direction of the relationship even if a relationship 
actually exists.

Given the relatively small number of people in the fair and poor categories we 
have combined them into one category. Hence, we are now working with four ordered 
health status categories. Let’s start our investigation by looking at health status and 
supplement use. Before examining the relationship between these two variables, we 
must decide how to handle this ordinal health status variable. Since there are four 
levels, there are really only three pieces of independent information. This means that 
we could create three independent functions that would contain all the information 
in the health status variable. One such set of functions is the following:

Pr (excellent) versus Pr (all other levels)

Pr (excellent plus very good) versus (good plus fair or poor)

Pr (excellent plus very good plus good) versus (fair or poor).

Given the sample values just mentioned for the probabilities of the various health 
status states, we would expect the fi rst function to be much less than one, the second 
function to be close to one, and the third function to be much greater than one. If 
we take the natural logarithm of the three functions, we would expect the fi rst to be 
negative, the second close to zero, and the third to be positive.

We could then perform three separate binary logistic regressions to examine the 
relationships to supplement use. A logistic model that could be used to examine the 
relationship is

ln (health-status functioni) = constanti + effect of supplement usei.

However, if the effect of supplement use on health status is consistent for these three 
functions, we could estimate this “average” effect of supplement use by considering 
a single model that included the supplement use effect plus three separate constant 
terms. In effect, this model is

ln (health-status functioni) = constanti + effect of supplement use.

This representation refl ects the idea that the regression lines for the different outcome 
functions are parallel to each other but that they have different intercepts. Table 14.12 
shows basic data for this analysis and for checking of the assumption of a consistent 
effect of supplement use — that is, the odds ratios for each of the health status func-
tions with supplement use are similar. This assumption is called the proportional 
odds assumption.

Since the odds ratios of 1.19, 1.36, and 1.51 are reasonably similar, we can con-
clude that the proportional odds assumption seems to be acceptable. We see that 
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those taking vitamin or mineral supplements are more likely to feel better about their 
health and vice versa. Given that the proportional odds assumption seems to hold, 
we can estimate the common odds ratio that summarizes the effect.

Note that it is not uncommon for an ordered logistic regression model not to satisfy 
the proportionality assumption (or parallel regression assumption). If this assump-
tion is not satisfi ed, other alternative models should be considered, such as the mul-
tinomial logistic model (Hosmer and Lemeshow 1999a).

Table 14.13 shows the results of ordered logistic regression analysis (see Program 
Note 14.4 on the website). The top panel shows the ordered logistic regression of 
health status on supplement use based on the reduced model that assumes the equality 
of the supplement coeffi cients for the three health-status variables. In this example, 
the equality of the supplement coeffi cients is another way of saying that the lines are 
parallel or that the odds are proportional for the three health-status variables.

In examining the results, we fi rst look at the test for the goodness of fi t of the 
model. In this case, the goodness-of-fi t test examines whether or not the three coef-
fi cients for supplement use in the full model are all equal. Based on the goodness-
of-fi t values from the Pearson and deviance tests, we fail to reject the equality of the 
coeffi cients (or that the lines are parallel or that the odds are proportional), a result 
we expected, since the preceding three odds ratios were fairly similar.

The maximum likelihood estimates of coeffi cients include the three intercepts 
and the common supplement effect. The intercepts don’t hold much interest for us, 
but their values are consistent with the expected pattern mentioned above (negative, 
close to zero, and positive). The estimated coeffi cient for vitamin use is 0.2835, and 
the corresponding estimated odds ratio is 1.33. This is the estimated common odds 
ratio for healthier status, comparing those taking supplements with those not taking 
supplements. The 95 percent confi dence interval for the common odds ratio, the p-
value for the test that the coeffi cient for supplement use is zero, and the g statistic 
(follows a chi-square distribution) all suggest that there is a signifi cant relationship 
between supplement use and health status at the 0.05 level.

The preceding analysis could be done using the CMH method presented in 
Chapter 10. But the ordered logistic regression model allows us to include continuous 

Table 14.12 Perceived health status by use and nonuse of vitamin or mineral supplements, 
NHANES, Phase II adult subsample (n = 988).

 Perceived Health Status

Vitamin Use Excellent Very Good Good Fair or Poor Total

User 105 139 127 53 424
Nonuser 122 160 182 100 564

Total 227 299 309 153 988a

 (28.0%) (30.3%) (31.3%) (15.5%) (100.1%)

Comparisons I II III

 105 319 244 180 371  53
 122 442 282 282 464 100
Odds Ratio 1.19 1.36 1.51
aExcluding cases with missing values
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In general, if the outcome variable is ordered and has g categories, we can form 
(g − 1) independent functions from the outcome variable. The proportional odds model 
assumes that the odds ratio across all (g − 1) cut-points is the same. Applying the same 
approach as previously, the proportional odds model for the j = 1, 2,  .  .  .  , g − 1 functions 
and p explanatory variables is
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explanatory variables. The results of the logistic regression of health status on supple-
ment use and the number of years of schooling are shown in the bottom panel of 
Table 14.13. First, our attention is called to goodness-of-fi t statistics. Since the 
Pearson and deviance residual statistics are larger than the degrees of freedom, the 
key fi nding here is that this model does not provide a good fi t to the data. Given that 
the model does not fi t, there is little reason to place much emphasis on the parameter 
estimates. However, note that the supplement variable’s effect has been greatly 
reduced when the years of schooling variable is considered. As just stated, it is dif-
fi cult using data from a point in time to examine relationships over time. In this 
situa tion, it is even not clear what variable should be used as the response or depen-
dent variable.

Table 14.13 Ordered logistic regression analysis of perceived health status on use of vitamin or 
mineral supplements and years of schooling, NHANES III, Phase II adult subsample (n = 988).

Model I (health status on vitamin use)
Predictor Coef SE Coef Z p Odds Ratio 95% CI Lower Upper
Constant (1) −1.3384 0.0923 −14.49 <0.001 — —
Constant (2) 0.0063 0.0808 0.08 0.938 — —
Constant (3) 1.5808 0.0993 15.92 <0.001 — —
Vitamin use 0.2835 0.1160 2.44 0.015 1.33 (1.06, 1.67)

Log-likelihood = −1332.777
 Test that all slopes are zero: G = 6.004, DF = 1, p-Value = 0.014

Pseudo R-Square = 0.002

Goodness-of-Fit Tests:
 Pearson Chi-Square = 1.354, df = 2, p-Value = 0.508
 Deviance Chi-Square = 1.357, df = 2, p-Value = 0.507

Model II (health status on vitamin use and years of schooling)
Predictor Coef SE Coef Z p Odds Ratio 95% CI Lower Upper
Constant (1) −4.4268 0.2768 −15.99 <0.001 — —
Constant (2) −2.9434 0.2586 −11.38 <0.001 — —
Constant (3) −1.1679 0.2452 −4.76 <0.001 — —
Vitamin use 0.0425 0.1192 0.36 0.722 1.04 (0.83, 1.32)
Schooling 0.2476 0.0205 12.08 <0.001 1.28 (1.23, 1.33)

Score test for the proportional odds assumption:
 Chi-Square = 1.594, df = 4, p-Value = 0.810

Log-likelihood = −1254.178
 Test that all slopes are zero: G = 163.202, DF = 2, p-Value = <0.001

Pseudo R-Square = 0.061

Goodness-of-Fit Tests:
 Pearson Chi-Square = 130.426, df = 100, p-Value = 0.022
 Deviance Chi-Square = 119.519, df = 100, p-Value = 0.089
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The functions used as the dependent variables are the logits of being in the g category 
or lower versus being in higher categories.

14.4   Conditional Logistic Regression
Data from matched studies can also be analyzed by a logistic regression approach. As 
discussed in Chapter 6, matching is a way of balancing certain characteristics between 
two groups. If matching is used in the design phase of a study, a treatment is given to 
one member of a matched pair and a placebo is given to the other. In case-control studies, 
a case with a particular outcome is matched to a control without the outcome of interest 
and an examination of a possible relationship to an exposure is assessed retrospectively. 
Matching can be one to one or one to several controls.

One way of analyzing matched studies is conditional logistic regression, a method 
illustrated in the following example.

Example 14.11

The DIG200 data set contains 27 subjects with cardiovascular disease (CVD) — 
cases who can be perfectly matched to 27 subjects without CVD — controls based 
on age, sex, and race. The matched data are shown in Table 14.14.

Table 14.14 Twenty-seven controls and matched cases of cardiovascular disease, DIG200.

 Control (without CVD) Case (with CVD)

Set Age Sex Race SBP MI Set Age Sex Race SBP MI

 1 43 1 1 120 1  1 43 1 1 90 0
 2 45 1 1 122 0  2 45 1 1 160 1
 3 46 1 1  96 1  3 46 1 1 110 1
 4 47 2 1 120 0  4 47 2 1 116 0
 5 49 1 1 140 0  5 49 1 1 122 1
 6 50 1 1 148 1  6 50 1 1 140 0
 7 51 2 1 124 1  7 51 2 1  95 0
 8 54 1 1 120 1  8 54 1 1 106 0
 9 57 1 1 136 0  9 57 1 1 140 1
10 58 2 2 100 0 10 58 2 2 100 1
11 59 1 1 100 1 11 59 1 1 100 0
12 60 1 1 102 1 12 60 1 1 140 1
13 63 1 1 105 0 13 63 1 1 114 0
14 64 1 1 150 1 14 64 1 1 130 0
15 65 1 1 132 0 15 65 1 1 130 1
16 66 1 1 130 1 16 66 1 1 160 0
17 67 1 1 130 1 17 67 1 1 130 1
18 68 2 1 144 1 18 68 2 1 152 1
19 69 1 1 130 0 19 69 1 1 116 0
20 70 1 1 150 1 20 70 1 1 110 0
21 71 1 1  90 0 21 71 1 1  90 0
22 72 2 1 140 0 22 72 2 1 155 0
23 73 1 1 140 1 23 73 1 1 150 0
24 74 1 1 100 1 24 74 1 1 140 1
25 76 1 1 140 0 25 76 1 1 130 0
26 79 1 1 130 0 26 79 1 1 150 1
27 80 2 1 118 1 27 80 2 1 165 0

Conditional Logistic Regression  407

Let us fi rst look at the relationship between CVD and prior MI. As we discussed 
in Chapter 10 (Section 10.2.5), the relationship can be summarized in the following 
2 by 2 table:
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Relevant information for the analysis of this table is contained in discordant cells (d1 
and d2), and we used the McNemar chi-square test to test the hypothesis of no rela-
tionship between CVD and MI. For the preceding table, the McNemar test statistic 
is

X
d d

d d
M
2 1 2
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1 2
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6 10
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The p-value for this test statistic is 0.454. If we ignore the correction for continuity, 
the test statistic is 1.00 with p-value of 0.317. There is no statistically signifi cant 
relationship between CVD and prior MI — that is, a previous MI is not predictive 
of the occurrence of CVD. The odds ratio for the preceding table is d1/d2 = 6/10 = 
0.6 and the corresponding 95 percent confi dence interval is (0.179, 1.82). Since the 
confi dence interval contains the value of 1, there does not appear to be a signifi cant 
relationship.

Conditional logistic regression offers an alternative method of analysis for matched 
studies. For example, if we wish to examine whether or not there may be a relation-
ship between the occurrence of CVD (1 = yes, 0 = no) and MI (1 = yes, 0 = no), we 
will focus on the difference of the variables within each of the 27 pairs because of 
the matching. The idea of focusing on the differences is similar to the use of differ-
ences in the paired t test. The CVD difference is always equal to +1 by defi nition. 
The difference in the MI variable can have the value of +1, 0, or −1 and this differ-
ence variable is now treated as a continuous variable by the computer software. We 
can use ordinary logistic regression using the differences as the variables. Since we 
are using differences, there is no need to include the constant term in the analysis.

The fi rst panel of Table 14.15 shows the results of the logistic regression analyses 
of the presence and absence of cardiovascular disease on prior myocardial infarction 
(see Program Note 14.5 on the website).

The estimated coeffi cient is −0.5108 (se = 0.5164), which gives the estimated odds 
ratio as exp(−0.5108) = 0.6. The 95 percent confi dence interval is found from the 
exp(−0.5108 ± 1.96 * 0.5164) or (0.22, 1.65). The odds ratio is exactly the same as 
found from the 2 by 2 table. The test results also turn out to be very similar to those 
obtained from the 2 by 2 table. The p-value for McNemar test was 0.317 compared 
to 0.3147 from the likelihood ratio test for the conditional logistic regression and to 
0.323 based on the normal test. Note that we entered the data for 54 observations 
(27 pairs), but we could have entered just the 16 discordant pairs and obtained the 
same results, since data for concordant pairs do not contribute anything to the 
analysis.

 Prior MI in Controls

Prior MI in Cases Yes No Total

Yes  5 (c1) 6 (d1) 11
No 10 (d2) 6 (c2) 16

Total 15 12 27
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For a simple situation like in the above 2 by 2 table, there is really no need to use 
the conditional logistic regression model. However, the conditional logistic model is 
very useful for more complicated situations where multiple predictor variables 
(including continuous variables) are used or for predictor variables with more than 
two levels. In the case of a discrete variable, such as the smoking variable in Table 
14.5, we use three dummy variables like those shown in Table 14.6 to show the 
smoking status of a person. But now in our conditional logistic regression model, we 
are subtracting the smoking status of the control from that of the case. This means 
that we are now creating three new difference variables having either the value of 
+1, 0 or −1. Each of these three difference variables refl ecting the smoking status 
would then be entered into the model and treated as if they were continuous 
variables.

In the model shown in the lower panel in Table 14.15, we entered two predictor 
variables (prior MI and systolic blood pressure). The results show that the estimated 
coeffi cient for MI changed slightly. The estimated odds ratio for prior MI adjusted 
for systolic blood pressure is 0.52, and its confi dence interval still includes one. The 
normal test for prior MI has a p-value of 0.242, and the p-value for the two-degree-
of-freedom test of hypothesis that both the prior MI coeffi cient and the SBP coeffi -
cient are simultaneously zero is 0.368. Hence we may conclude that prior MI appears 
to have no statistically signifi cant effect on CVD, whether or not we adjust for 
SBP.

Table 14.15 Conditional logistic regression analysis of matched cases of cardiovascular disease on 
prior myocardial infarction and systolic pressure, 57 pairs from DIG200.

Model I (CVD on prior MI)
Conditional (fi xed-effects) logistic regression Number of obs = 54
   LR chi2 (1)  =  1.01
   Prob > chi2  =  0.3147
Log likelihood = −18.209631  Pseudo R2  =  0.0270

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Prior MI −0.5108 0.5164 −0.99 0.323 0.600 (0.218, 1.651)

Model II (CVD on prior MI and systolic blood pressure)
Conditional (fi xed-effects) logistic regression Number of obs = 54
   LR chi2 (2)  =  2.00
   Prob > chi2  =  0.3683
Log likelihood = −17.716158  Pseudo R2  =  0.0534

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Prior MI −0.6496 0.5546 −1.17 0.242 0.522 (0.176, 1.549)
SBP  0.0187 0.0195  0.96 0.337 1.019 (0.981, 1.059)

14.5   Introduction to Proportional 
Hazard Regression

The proportional hazards model introduced by D. R. Cox (1972) is an extension of the 
material in Chapter 11, and the Cox approach has become the most widely used regres-
sion model in survival analysis. In Chapter 11, we introduced the hazard function, 
defi ned as the probability of failure during an interval of time divided by the size of the 
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410  Logistic and Proportional Hazards Regression

interval. Cox’s regression allows the examination of the possible relationship between 
the hazard function and a set of independent variables. We use the following example 
in the introduction of the Cox model.

Example 14.12

The DIG200 data set was introduced in Chapter 3 as part of the digoxin trial. Mor-
tality was monitored and the number of days to death or to the end of the trial for 
those who were still living. Mortality and the number of days of survival for 200 
subjects in the DIG200 dataset are shown in Table 14.16, along with age and BMI 
rounded to the whole number.

Table 14.16 Survival data for 200 subjects in the Digoxin trial, DIG200.

 Placebo Group Digoxin Group

  Days to    Days to
ID Death Death Age BMI Death Death Age BMI

  1 0 631 70 26 1 627 45 33
  2 0 1,166 74 30 0 1,501 66 29
  3 1 1,025 65 26 1 431 62 27
  4 0 1,508 51 30 1 149 63 23
  5 0 1,727 73 28 0 1,335 72 22
  6 0 1,167 52 30 1 620 31 27
  7 0 1,117 62 29 0 1,157 58 23
  8 0 1,544 70 23 0 1,215 55 21
  9 0 1,578 52 31 1 1,216 74 26
 10 0 1,192 62 22 1 165 28 29
 11 1 1,075 65 28 0 880 57 28
 12 0 1,052 66 28 0 1,518 63 29
 13 1 338 71 33 1 586 69 27
 14 0 1,131 58 27 0 1,181 60 23
 15 0 1,173 50 27 0 1,136 47 31
 16 0 1,432 29 41 0 1,475 79 38
 17 0 1,432 68 28 1 169 73 27
 18 0 970 46 22 0 1,194 58 26
 20 0 1,279 71 21 0 879 71 26
 21 1 940 70 19 1 562 63 30
 22 0 1,328 57 24 0 1,697 61 23
 23 0 1,454 51 20 0 1,591 63 28
 24 1 1,516 72 27 0 1,523 58 28
 25 0 1,598 84 32 1 415 50 32
 26 0 1,355 57 27 0 1,542 66 33
 27 0 1,013 59 18 0 1,353 61 27
 28 1 901 52 24 0 1,390 77 27
 29 1 50 63 20 0 1,060 71 27
 30 0 1,726 50 26 0 1,748 73 27
 31 0 1,188 46 26 0 1,559 57 26
 32 1 825 68 25 0 1,034 68 24
 33 1 33 79 30 0 1,680 51 26
 34 0 1,501 88 33 1 300 65 24
 35 0 1,318 54 31 1 644 56 26
 36 1 538 53 34 1 132 66 27
 37 1 629 79 27 0 1,528 60 27
 38 1 1,359 76 31 1 951 67 26
 39 1 374 78 23 0 969 49 15
 40 0 887 69 36 0 958 53 26
 41 1 790 63 25 0 989 66 29
 42 1 966 55 27 0 1,566 66 32
 43 0 1,250 60 30 0 1,157 45 24
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Table 14.16 Continued

 Placebo Group Digoxin Group

  Days to    Days to
ID Death Death Age BMI Death Death Age BMI

 44 0 1,192 55 20 1 949 68 21
 45 0 1,108 51 22 0 537 73 22
 46 1 1,176 55 22 0 1,279 49 27
 47 0 1,160 71 25 0 1,629 57 24
 48 1 8 72 23 0 1,277 60 22
 49 1 609 69 22 0 1,342 77 22
 50 0 1,649 79 19 1 943 72 23
 51 1 609 64 21 0 1,626 66 27
 52 0 1,374 74 36 0 1,147 42 24
 53 0 1,168 78 43 0 867 52 24
 54 1 1,268 68 26 0 1,144 54 27
 55 0 871 71 22 0 1,152 65 29
 56 0 1,516 65 27 1 295 46 36
 57 0 1,090 44 26 1 447 67 30
 58 1 1,007 62 25 1 511 75 26
 59 0 1,391 65 29 0 899 54 27
 60 1 547 61 32 0 1,622 58 28
 61 1 531 52 25 1 1,567 66 24
 62 1 848 64 27 0 1,328 57 24
 63 1 305 57 19 0 1,203 61 26
 64 1 392 69 25 1 229 65 28
 65 0 1,500 76 30 1 1,003 80 25
 66 1 1,464 50 34 1 335 77 27
 67 0 982 68 27 1 543 46 29
 68 0 1,259 54 22 1 1,004 70 19
 69 0 1,125 42 24 1 10 35 26
 70 0 1,508 43 29 0 895 69 20
 71 0 1,559 55 19 0 984 63 21
 72 1 299 67 24 0 872 71 23
 73 0 1,405 56 35 0 881 53 25
 74 0 1,489 47 23 0 1,598 58 29
 75 0 1,012 57 23 0 947 80 27
 76 1 270 56 20 0 1,588 70 29
 77 0 1,298 64 18 0 1,116 38 31
 78 0 1,567 81 23 0 1,587 68 25
 79 0 873 75 23 1 636 50 24
 80 1 1,553 69 22 0 344 54 23
 81 0 1,340 43 21 0 1,097 67 33
 82 1 340 69 24 1 970 65 45
 83 1 188 81 38 0 1,341 76 40
 84 0 1,522 59 27 0 1,339 75 38
 85 0 1,504 77 24 0 898 59 22
 86 1 59 74 29 0 975 47 32
 87 1 1,254 67 22 0 1,131 70 37
 88 0 949 53 27 0 1,486 49 23
 89 0 1,553 76 25 0 1,570 79 27
 90 1 895 46 21 1 477 45 27
 91 0 1,270 68 28 0 1,287 67 20
 92 0 1,228 55 23 0 1,678 37 27
 93 1 1,298 83 26 0 1,585 67 34
 94 1 1,144 59 25 0 1,350 70 24
 95 0 1,669 69 32 0 1,166 69 22
 96 0 1,262 61 28 1 1,032 68 24
 97 1 253 55 26 1 681 34 20
 98 1 495 46 27 0 42 48 30
 99 0 1,180 54 32 0 538 60 24
100 1 346 45 23 0 1,612 77 28

Death: 1 = died, 0 = survived; BMI is rounded to the whole number
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412  Logistic and Proportional Hazards Regression

In the DIG200 dataset, there are 72 deaths: 40 deaths in the placebo group and 
32 deaths in the treatment group. To compare survival experience of the two groups, 
we can use the methods discussed in Chapter 11. As explained in Chapter 11, we 
need to treat those subjects who were still living at the end of the follow-up period 
as censored observations. Figure 14.5 shows the Kaplan-Meier survival curves by 
treatment group.

The Kaplan-Meier curves do not show a noticeable difference in the survival 
experience between the placebo and treatment group, although survival appears to 
favor the treatment group slightly after 1200 days. In addition, the hazard plots shown 
in Figure 14.6 do not show an appreciable difference between the two groups except 
for later time periods.

Descriptive statistics in Table 14.17 show slightly better survival probabilities for 
the treatment group. However, the p-value of the log-rank test for comparing the two 
survival distributions is 0.398, indicating that there is no statistically signifi cant 
benefi t to being treated with digoxin.

The Cox proportional hazards regression model offers an alternative method to 
compare the survival experience of the two groups. The model focuses on the hazards 
in the two groups. Let h0 (t) be the hazard at time t for the placebo group and h1 (t) 
be the hazard at time t for the digoxin group. Then the ratio of these two hazards, 
the hazard ratio, can be modeled under the assumption that it is constant at all sur-
vival times, t. It implies that

h t

h t
1

0

( )
( )

= φ.

The hazard function in the denominator is called the baseline hazard. We already 
encountered this proportional hazards assumption in applying the CMH and log rank 

Figure 14.5 Kaplan-Meier curves for digoxon and placebo groups, DIG200.
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tests in Chapter 11. Since the Cox procedure is based on this assumption, it behooves 
us to examine this assumption. Based on the plot of the hazard rates in Figure 14.6, 
it appears as if the ratio of the rates is a constant at least as far out as 1300 days. 
After that, the ratio changes slightly from around one to less than one. We can sepa-
rate our investigation into two parts, before and after 1300 days, if we want to be 
safe. If we limit the analysis to the fi rst 1300 days, the log-rank test chi-square value 
is 0.0062 with a p-value of 0.938. We conclude that there is no difference in survival 
between the placebo and digoxin groups. There is one death in the digoxin group 
and four deaths in the placebo group after 1300 days. For purposes of demonstration, 
we will simply consider the entire follow-up period in our analysis.

Since hazards are always positive, we can substitute eb where b is a parameter 
with no restrictions (can be positive, zero, or negative) for the quantity f. Using this 
notation, we can express Cox’s regression model as

ln
h t

h t
x1

0

( )
( )

⎛
⎝

⎞
⎠ = β

Figure 14.6 Hazard rate plot for digoxin and placebo groups, DIG200.

Table 14.17 Descriptive analysis of survival for digoxin and placebo groups, DIG200.

Descriptor Digoxin Group (n = 100) Placebo Group (n = 100)

Number of Deaths 32 40
Survival Probabilities at
 360 days 0.909 0.880
 900 days 0.763 0.749
 1440 days 0.660 0.583
Survival Percentiles
 25th 949 days 895 days
 50th — 1553 days

Log Rank Test Chi-square 0.715
 p-value 0.398
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414  Logistic and Proportional Hazards Regression

where x is an indicator variable (0 if an individual received a placebo or 1 if an 
individual received the digoxin treatment). Note that this linear model has no inter-
cept term unlike the general regression model. No intercept is necessary here because 
we are only concerned with estimating the hazard ratio.

Just as when using the Kaplan-Meier procedure, in the Cox regression model we 
also must specify the censored observations — that is, those who were still living at 
the end of follow-up period, when entering the data for analysis. The results of fi tting 
this model to the survival data for the two groups are shown in Table 14.18 (Model 
I). (see Program Note 14.6 on the website.) The estimated coeffi cient is −0.2007 
with standard error of 0.2377. The estimated hazard ratio is exp(−0.2007) = 0.82, 
suggesting that the hazard is 18 percent lower for the treatment group. This is con-
sistent with the slightly favorable survival probabilities for the treatment group 
shown previously. The 95 percent confi dence interval for the estimated hazard ratio 
is exp(0.2007 ± 1.96 * 0.2377), or (0.51, 1.30). Since the confi dence interval contains 
the value of one, there is not suffi cient evidence to conclude that the use of digoxin 
lowers the risk of dying. Finally, notice that the p-values for the Wald test statistic 
(0.399) and likelihood ratio test statistic (0.397) are very close to the p-value for the 
log rank test (0.398), and they all cause us to fail to reject the null hypothesis of no 
treatment effect.

The Cox model allows us to incorporate additional predictor variables besides the 
treatment variable. To demonstrate the inclusion of additional variables, we next 
carry out Cox’s regression analyses of survival experience in DIG200 considering 
treatment status and two continuous variables, age and body mass index. Model II 
in Table 14.18 considers treatment group status and age as predictor variables. Model 
III includes treatment group status, age, and body mass index in the model. Since 
the digoxin trial randomly allocated patients into the two groups, we do not expect 
that incorporation of age and BMI would change the difference in survival between 

Table 14.18 The fi t of the proportional hazards regression of survival on digoxin treatment, age, and 
body mass index: DIG200.

Model I (survival on digoxin treatment)
     LR chi2 (1) = 0.72
Log likelihood = −353.81122    Prob > chi2 = 0.3972

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Treatment −0.2007 0.2377 −0.84 0.399 0.8182 (0.5134, 1.3037)

Model II (survival on digoxin treatment and age)
     LR chi2 (2) = 0.82
Log likelihood = −353.76215    Prob > chi2 = 0.6653

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Treatment −0.2015 0.2378 −0.85 0.397 0.8175 (0.5130, 1.3029)
Age −0.0033 0.0105 −0.31 0.754 0.9967 (0.9765, 1.0174)

Model III (survival on digoxin treatment, age, and body mass index)
     LR chi2 (3) = 0.93
Log likelihood = −353.70398    Prob > chi2 = 0.8178

 Coef. Std. Err. z p > |z| Odds Ratio [95% CI]
Treatment −0.1980 0.2380 −0.83 0.405 0.8204 (0.5146, 1.3080)
Age −0.0031 0.0106 −0.29 0.771 0.9969 (0.9765, 1.0178)
BMI −0.0085 0.0249 −0.34 0.735 0.9916 (0.9443, 1.0413)
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treatment and control groups. We are considering these two additional models to 
illustrate the usefulness of the Cox approach.

In Model II, the estimated hazard ratio for digoxin treatment, for a fi xed age, is 
0.82, which is the same as the unadjusted hazard ratio in Model I. The estimated 
hazard ratio for age, in the same group, is 1.00, suggesting that age variable does not 
make any difference at all. The comparison in the two likelihood values suggests 
there is no signifi cant age effect. Similarly, in Model III, addition of body mass index 
to the model does not make a difference. The estimated hazard ratio for digoxin 
treatment, holding age and BMI constant, is still 0.82.

In general, the proportional hazards model considering k independent variables is 
expressed in terms of the hazard function

 h t h t x x xk k( ) = ( ) ⋅ + + +( )0 1 1 2 2exp . . .β β β

where h0(t) is referred to as the baseline hazard and is multiplied by the exponential of 
the k independent variables. This model can also be expressed as

 
ln . . . .

h t

h t
x x xk k

( )
( )

⎛
⎝⎜

⎞
⎠⎟

= + + +
0

1 1 2 2β β β

The natural log of the hazard ratio is linearly related to the sum of the k independent 
variables. This equation is similar to the formula for the logit model we used in logistic 
regression. Independent variables may be discrete or continuous. Discrete independent 
variables with more than two levels require dummy coding as in the general regression 
model. For more detailed treatment of proportional hazards regression, we refer to more 
advanced books (Collett 1994; Cox and Oakes 1984; Hosmer and Lemeshow 1999a).

Conclusion
In this chapter, we showed that logistic regression is a part of the larger general linear 
model approach for analyzing data. Logistic regression is an important method, particu-
larly in epidemiology, as it allows the investigator to examine the relation between a 
binary dependent variable and a set of continuous and discrete independent variables. 
The interpretation of the model parameters in terms of the odds and odds ratios is a key 
attraction of the logistic regression procedure. Many of the diagnostic procedures used 
to examine the appropriateness and fi t of the multiple linear regression model have also 
been adapted to logistic regression, making it an even more attractive method. We also 
briefl y introduced the Cox’s proportional hazards model as a method that goes beyond 
the survival analysis methods in Chapter 11. This model allows us to examine multiple 
factors to determine whether or not there appears to be an association with the length 
of survival.

This chapter provides an introduction to both of these topics. It is not meant to be 
exhaustive, particularly regarding the presentation of the proportional hazards model. 
Interested readers are encouraged to avail themselves of several books that focus on 
these topics.
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416  Logistic and Proportional Hazards Regression

EXERCISES

14.1 Data from an article by Madsen (1976) are used here to examine the relation 
between survival status — less than 10 years or greater than or equal to 10 
years — and the type of operation — extensive (total removal of the ovaries 
and the uterus) and not extensive — for 299 patients with cancer of the ovary. 
Other factors could be included — for example, stage of the tumor, whether or 
not radiation was used, and whether or not the tumor had spread — in a logistic 
regression analysis. However, we begin our consideration with only the one 
independent variable. The data are

 Survival Status

Type of Operation <10 years ≥10 years

Extensive 29 122
Not Extensive 20 28

 In a logistic regression analysis — using the logit for >10 years of survival and 
the not extensive type of operation as the base level — the estimates of the 
constant term and the regression coeffi cient for the type of operation (extensive) 
are 0.3365 and 0.3920, respectively. Provide an interpretation for these esti-
mates. Demonstrate that your interpretations are correct by relating these esti-
mates to the preceding table.

14.2 Based on DIG200, investigate how previous myocardial infarction (MI) is 
related to age, race, sex, and BMI. Summarize the computer output in a table 
and interpret the results. Explain the odd ratios for each independent variable. 
What is the predicted proportion of having had an MI for a nonwhite female 
60 years of age with a BMI of 30?

14.3 The story of the Donner party, stranded in the Sierra Nevada in the winter of 
1846–1847, illustrates the hardship of the pioneers’ journey to California. Of 
the 83 members of the Donner party, only 45 survived to reach California. The 
following data represent sex, age, and survival status of adult members (15 years 
of age and older).

Person Sex Age Status Person Sex Age Status

 1 M 62 died 23 M 32 survived
 2 F 45 died 24 F 23 survived
 3 M 56 died 25 M 30 died
 4 F 45 died 26 F 19 survived
 5 M 20 survived 27 M 30 died
 6 M 25 died 28 M 30 survived
 7 M 28 died 29 F 30 survived
 8 F 32 survived 30 M 57 died
 9 F 25 survived 31 F 47 died
10 M 24 died 32 F 20 survived
11 M 28 died 33 M 18 survived
12 M 25 died 34 F 15 survived
13 M 51 survived 35 F 22 survived
14 F 40 survived 36 M 23 died
15 M 35 died 37 M 25 died
16 M 28 survived 38 M 23 died
17 F 25 died 39 M 18 survived
18 F 50 died 40 M 46 survived
19 M 15 died 41 M 25 survived
20 F 23 survived 42 M 60 died
21 M 28 survived 43 M 25 died
22 F 75 died

Source: http://members.aol.com/DanMRosen/donner/survivor.htm
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 Run a logistic regression analysis using sex and age as predictor variables for 
survival and interpret the results. How does a female’s odds of survival compare 
with a male’s odds while controlling for age? How does a 45-year-old person’s 
odds of survival compare with a 15-year-old person’s odds while controlling for 
sex?

14.4 Woodward et al. (1995) investigated prevalence of coronary heart diseases 
(CHD) in men. Prevalent CHD was defi ned on a four-point graded scale in 
decreasing order of severity: myocardial infarction (MI), angina grade II, 
angina grade I, no CHD. One of several risk factors examined was parental 
history of CHD before age 60. The data are

Parental History CHD Categories

of CHD MI Angina II Angina I No CHD Total

Present 104 17  45  830  996
Absent 192 30 122 3,376 3,720
Total 296 47 167 4,206 4,716

 Number of 
 Gun Owners

Case Control Odds Ratio (95% CI)

174 139 1.6 (1.2 − 2.2)

 Odds Ratio (95% CI)

Variable Crude Adjusted

Gun ownership 1.6 (1.2 − 2.2) 2.7 (1.6 − 4.4)
Home rented 5.9 (3.8 − 9.2) 4.4 (2.3 − 8.2)
Lived alone 3.4 (2.2 − 5.1) 3.7 (2.1 − 6.6)
Domestic violence 7.9 (5.0 − 12.7) 4.4 (2.2 − 8.8)
Any household member arrested 4.4 (3.0 − 6.0) 2.5 (1.6 − 4.1)
Any member used illicit drugs 9.0 (5.4 − 15.0) 5.7 (2.6 − 12.6)

 Analyze the data using an ordered logistic regression model treating the CHD 
categories as levels of an ordinal dependent variable and parental history of 
CHD as the independent variable. If the proportional odds assumption is satis-
fi ed, summarize the results and interpret the fi ndings. What is the predicted 
risk of CHD for a person with no CHD?

14.5 Kellermann et al. (1993) investigated the effect of gun ownership on homicide 
in the home using a retrospective matched-pairs design. They compared 388 
cases of homicides with control subjects matched according to neighborhood, 
sex, race, and age range. They presented the following information in the 
article:

 Is it possible to verify that the reported crude odds ratio is correct? If yes, verify 
it. If not, what information is lacking? For a multivariate analysis, the following 
information is shown:

 Explain what statistical method is used to calculate the adjusted odds ratios and 
their confi dence intervals. How would you interpret the adjusted odds ratio of 
2.7 for gun ownership?
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418  Logistic and Proportional Hazards Regression

14.6 A case-control study of presenile dementia was introduced in Chapter 10 
(Example 10.6). Each dementia case was individually paired with a community 
control of the same sex and age, and family history of dementia was ascertained 
in both groups, retrospectively. The following cross-tabulation of the 109 pairs 
by the presence or absence of family history of dementia was analyzed. Based 
on the McNemar chi-square test statistic, we concluded that there is evidence 
for an association between dementia and family history of the disease:

 Family History of 

Family History of Dementia in Control

Dementia in Case Present Absent

Present  6 25
Absent 12 66

 Control (without Dementia) Case (with Dementia)

Set Dementiaa Historyb Set Dementiaa Historyb

 1 0 1  1 1 0
 2 0 1  2 1 0
 3 0 1  3 1 0
 4 0 1  4 1 0
 5 0 1  5 1 0
 6 0 1  6 1 0
 7 0 1  7 1 0
 8 0 1  8 1 0
 9 0 1  9 1 0
10 0 1 10 1 0
11 0 1 11 1 0
12 0 1 12 1 0
13 0 0 13 1 1
14 0 0 14 1 1
15 0 0 15 1 1
16 0 0 16 1 1
17 0 0 17 1 1
18 0 0 18 1 1
19 0 0 19 1 1
20 0 0 20 1 1
21 0 0 21 1 1
22 0 0 22 1 1
23 0 0 23 1 1
24 0 0 24 1 1
25 0 0 25 1 1
26 0 0 26 1 1
27 0 0 27 1 1
28 0 0 28 1 1
29 0 0 29 1 1
30 0 0 30 1 1
31 0 0 31 1 1
32 0 0 32 1 1
33 0 0 33 1 1
34 0 0 34 1 1
35 0 0 35 1 1
36 0 0 36 1 1
37 0 0 37 1 1
aCodes: 0 = without dementia; 1 = with dementia
bCodes: 0 = without history; 1 = with history

 The following table shows the data for the 37 discordant pairs. Analyze the data 
using the conditional logistic regression approach and see whether the same 
conclusion can be drawn.
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A symptoms:  3.2*  4.4*  6.2  9.0  9.9 14.4 15.8 18.5 27.6* 28.5 30.1*
 31.5* 32.2* 41.0 41.8* 44.5* 47.8* 50.6* 54.3* 55.0 60.0* 60.4*
 63.6* 63.7* 63.8* 66.1* 68.0* 68.7* 68.8* 70.9* 71.5* 75.3* 75.7*

B symptoms:  2.5  4.1  4.6  6.4  6.7  7.4  7.6  7.7  7.8  8.8 13.3
 13.4 18.3 19.7 21.9 24.7 27.5 29.7 30.1* 32.9 33.5 35.4*
 37.7* 40.9* 42.6* 45.4* 48.5 48.9* 60.4* 64.4* 66.4*

Asterisks indicate censored observations.

14.7 The survival of 64 lymphoma patients was analyzed for two different symptom 
groups (A and B) in Exercise 11.4. The survival times (in months) for the two 
symptom groups is shown here:

 Analyze the data using Cox’s regression method and see whether the same 
conclusion can be drawn as in Exercise 11.4. Do you think that the proportional 
hazards assumption is acceptable in your analysis?
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