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In Chapter 8, we used the t test for testing the equality of two population means based 
on data from two independent samples. In this chapter, we introduce a procedure for 
testing the equality of two or more means. The two experimental designs discussed in 
Chapter 6 — the completely randomized and the randomized block designs — will be 
considered.

The comparison of two or more means is based on partitioning the variation in the 
dependent variable into its components — hence, the method is called the analysis of 
variance (ANOVA). It was introduced by Sir Ronald A. Fisher and has been used in 
many fi elds of research. We begin this chapter with a presentation of the assumptions 
made when the ANOVA is used. This section is followed by an introduction to the one-
way ANOVA. In conjunction with this analysis, we present three methods used in mul-
tiple comparison analysis. These topics are followed by the analysis of the randomized 
block design, an example of a two-way ANOVA, and a two-way ANOVA with interac-
tion. We next provide a linear model representation of the ANOVA, followed by the use 
of the linear model with unequal group sizes.

12.1   Assumptions for Use of the ANOVA
The ANOVA is used to determine whether or not there is a statistically signifi cant dif-
ference among the population means of two or more groups. The theoretical basis of 
the ANOVA requires that the data being analyzed are independent and normally dis-
tributed. We must also assume that the population variances in each of the groups have 
the same value, s2. The ANOVA procedure works reasonably well if there are small 
departures from the normality assumption. However, if the variances are very different, 
there is concern about the signifi cance levels reported in the analysis (Scheffé 1959). 
This concern is consistent with the material presented in Chapters 7 and 8, where we 
saw different methods for comparing two means, depending on whether or not we 
assumed that the population variances were equal. One method for protecting against 
the effects of different values for the variances is to have approximately equal numbers 
of observations in each of the groups being analyzed. Another approach involves trans-
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324  Analysis of Variance

formations of the dependent variable (Kleinbaum, Kupper, and Muller 1988; Lin and 
Vonesh 1989). One further assumption is that the groups being compared are the only 
groups of interest. This assumption means that the factors — the independent variables 
— are fi xed factors. Fixed and random factors and their implications are discussed later 
in this chapter, and further information is available elsewhere (Steel and Torrie 1980).

There are no fi rm rules for the number of observations required by the ANOVA. It 
is possible to perform power calculations or to use the size of confi dence intervals to 
estimate the required sample size. In general, we recommend that there be a minimum 
of 5 to 10 observations for each of the combinations of levels of the independent vari-
ables used in the analysis. For example, with two independent variables, if one has 3 
levels and the other independent variable has 4 levels, there are 12 combinations of 
levels.

12.2   One-Way ANOVA
In a one-way ANOVA, there is only one independent variable. The data to be analyzed 
are obtained from either (1) a random sample of subjects who belong to different groups 
— for example, different racial groups — or (2) an experiment in which the subjects 
are randomly assigned to one of several groups. The latter situation arises when we use 
the completely randomized design discussed in Chapter 6. In the completely randomized 
design, subjects are randomly allocated to groups and the groups represent the levels of 
the independent variable. Observations of the continuous variable of interest, the depen-
dent variable, are taken on the subjects and the subject’s group membership is also 
recorded. In the following example, we consider data from a completely randomized 
design, and we wish to determine whether or not there is a difference in mean age among 
three groups.

Example 12.1

Data shown in Table 12.1 are based on an article by Kimball et al. (1986) and can 
be analyzed using a one-way ANOVA. In the article, the authors wished to evaluate 
ventricular performance after surgical correction of congenital coarctation of the 
aorta. The ventricular performance was compared to that found in two control 
groups. Because of the possible roles that age and gender play on ventricular perfor-
mance, the authors wanted the age and sex distributions of the subjects who had 
undergone the surgery to be similar to those of the members of the two control 
groups. We wish to examine whether or not the authors were successful in obtaining 
groups that were similar on the age variable. The ages shown in Table 12.1 are 
hypothetical, based on the summary values reported by Kimball et al. In this example, 
the dependent variable is age, and the independent variable is the group to which the 
subjects belong.

The entries in Table 12.1 can be represented symbolically as yij, where the fi rst 
subscript indicates the subject’s group membership and the second subscript identi-
fi es the subject in the ith group. For example, y11 is 32 years old, y12 is 28 years old, 
y25 is 34 years old, y26 is 33 years old, and so on. The fi rst subscript ranges from 1 
to 3. When the fi rst subscript has the value of 1, the range of the second subscript is 
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One-Way ANOVA  325

In the following section, we show how the data in Example 12.1 can be analyzed.

12.2.1   Sums of Squares and Mean Squares

As was just mentioned, this method, the analysis of variance, is based on a partitioning 
of the variation in the dependent variable. In the one-way ANOVA, there are two pos-
sible sources of variation in the dependent variable. One source is variation among (or 
between) the groups — that is, the groups may have different means that vary about the 
overall mean. The other possible source is variation within the groups. Not all the sub-
jects in the same group will have exactly the same values, and the within-group variation 
refl ects this.

The null hypothesis being tested here is that the population group means are equal 
to one another. If this hypothesis is true, all the observations come, in effect, from the 
same population. Thus, any variation that remains among the group means really refl ects 
the random variation among the observations — that is, the within-groups variation. 
Thus, the adjusted among and within variations should be similar if the null hypothesis 
is true. If the null hypothesis is false, the adjusted among-groups variation should be 
larger than the adjusted within-group variation because it includes variation between the 
populations as well as the within-group variation. Thus, we can use the adjusted among- 
and within-group variations as the basis of a test of the equality of the group means.

We can represent the above idea in symbols as
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This equation shows the partitioning of the total variation in Y, the dependent variable, 
about its mean into an among (or between)-group component and a within-group com-
ponent. These sum of squares are called the total sum of squares corrected for the mean 
(SST), the among (or between)-group sum of squares (SSB) and the within-group sum 
of squares (SSW).

from 1 to 25, and this is also the case when the fi rst subscript is 2. When the fi rst 
subscript has the value of 3, the second subscript ranges from 1 to 18. In general, 
there are r groups and ni observations in the ith group. We also use the ⋅ notation 
introduced in Chapter 10. For example, yi. is a shorthand notation for Σj yij and y.. is 
shorthand for ΣiΣj yij. Thus, y1. represents the sum of all the ages for the subjects in 
the surgery group, and y.. is the sum of all the 68 ages in the sample. It follows that 
y–i. is the sample mean of the i-th group, and y–.. is the overall sample mean.

Table 12.1 Hypothetical ages for control and surgery subjects.

Group Ages

Surgery 32 28 22 25 20 20 28 28 20 29 22 37 18 29 22 32 21 34
 19 23 23 26 41 20 33
Control I 32 26 31 39 34 33 29 41 35 33 33 43 25 39 36 37 28 34
 27 45 22 29 51 28 35
Control II 31 35 26 28 22 29 27 21 22 27 24 44 21 25 27 18 27 36
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326  Analysis of Variance

If we adjust these two components for the number of independent observations used 
in their calculations — that is, divide each component sum of squares by its degrees of 
freedom — we have the mean square among (or between) and the mean square within. 
The mean square between is
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where the second expression refl ects the fact that the terms in the parentheses do not 
vary with j. The mean square within is
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where n is the total number of observations — that is, the sum of the ni. The degrees of 
freedom for the mean square between, r − 1, comes from the calculation of the variation 
in r means. The degrees of freedom for the mean square within, n − r, is the result of 
summing the ni − 1 degrees of freedom associated with the ith group over the r groups.

The mean square within is particularly useful as it also provides an adjusted estimate 
of the variation within groups — that is, of s 2, the variance of the dependent variable. 
It is based on the assumption that the variance of the dependent variable is the same 
within each group. If there is no difference between the group means, then the mean 
square between also estimates s 2.

Example 12.2

For the data in Table 12.1, we have the following values of means and sums of 
squares. First, y–1⋅, the sample mean of the fi rst group, is 26.08, y–2⋅ is 33.80, and y–3⋅ 
is 27.22. The overall sample mean, y–⋅⋅, is 29.22 years. The sum of squares between is

SSB = 25(26.08 − 29.22)2 + 25(33.80 − 29.22)2 + 18(27.22 − 29.22)2 = 842.9.

The sum of squares within involves too many terms to show, but its sum of squares 
is 2660.8 and the total sum of squares (corrected) is 3503.7.

12.2.2   The F Statistic

The comparison of these two mean squares provides information about whether or not 
the null hypothesis is true. One way of comparing the mean squares is to take their 
difference. If the null hypothesis were true, then the difference would be zero. However, 
the probability distribution of the difference is not widely available. Another way of 
comparing the mean squares is to take the ratio of the mean square between to the mean 
square within. If the null hypothesis were true, the ratio would equal one. If the null 
hypothesis were false, the ratio would be larger than one. Fortunately, the probability 
distribution of the ratio has been worked out, and it is an F distribution with r − 1 and 
n − r degrees of freedom. Tables of the F distribution, named in honor of Sir Ronald 
Fisher, are shown in Appendix B11 for the 0.01, 0.05, and 0.10 signifi cance levels for 
values of the numerator ( f1) and denominator ( f2) degrees of freedom parameters.
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The F distribution has many different shapes, depending on the values of the degrees 
of freedom parameters. Figure 12.1 shows the shape of the F distribution for degrees of 
freedom pairs (1 and 20) and (5 and 20). We can see that the shapes are different, but 
most of the probability (area) is associated with values of F close to one.

There is also a relation between the t and F distributions that can be seen from the 
t and F tables. The relation is t2

k,1−a /2 is equal to F1,k,1−a . For example, when k is 10, t10,0.95 
is 1.8125, and its square is 3.2852. Examination of the F tables in Appendix B11 shows 
that F1,10,0.90 is 3.29. This equivalence when there are two groups leads us to think that 
there may be a relation between the ANOVA and t test approaches in the two-group 
situation.

12.2.3   The ANOVA Table

The preceding sums of squares and mean squares are usually presented in tabular 
format, as shown in Table 12.2.

Figure 12.1 Plot of the 
probability density 
functions of the F 
distribution for F1,20 
(solid line) and F5,20 
(broken line).

Table 12.2 Typical ANOVA table for a one-way analysis.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Between Groups r − 1 SSB  SSB/(r − 1) = MSB MSB/MSW
Within Groups n − r SSW SSW/(n − r) = MSW

Total (Corrected) n − 1 SST

The degrees of freedom and sums of squares associated with the between and within 
groups sum to the corresponding total values. If these values do not sum to the total, a 
mistake has been made in the calculations.

The F statistic is then used to test the null hypothesis that the group means are equal 
against the alternative hypothesis that the group means are not all equal. When the null 
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328  Analysis of Variance

hypothesis is true, the F statistic follows an F distribution with r − 1 and n − r degrees 
of freedom. If the calculated F statistic is greater than Fr-1,n-r,1-a , found in Appendix Table 
B11, we reject the null hypothesis in favor of the alternative hypothesis at the a signifi -
cance level. If the calculated F statistic is less than this critical value, we do not have 
suffi cient evidence to reject the null hypothesis.

Example 12.3

Based on the sums of squares presented in Example 12.2, we can complete the 
ANOVA table for the ages shown in Table 12.1. Let us test the hypothesis of the 
equality of the mean ages at the 0.01 signifi cance level. Table 12.3 is the ANOVA 
table for the age data.

There are 68 observations in the three groups. Hence, there are 2 degrees of 
freedom for the factor (between groups), variable, 65 degrees of freedom for error 
(within groups), and 67 degrees of freedom for the total sum of squares. The table 
shows the sums of squares and mean squares as well as the F ratio. The exact critical 
value of this test is not shown in Table B11, but the closest value shown for F is 4.98 
for F2,60,0.99. From the table, we see that the exact F value for F2,65,0.99 is slightly less 
than 4.98.

The calculated F statistic (10.29) is greater than the approximate critical value of 
4.98. Therefore, we reject the equality of the mean ages in favor of the alternative 
hypothesis. It appears that the three groups differ on age. This fi nding means that it 
may be necessary to take age into account in the analysis of ventricular performance. 
The square root of the mean square for error is 6.395 ( = 40 9. ), and it is an estimate 
of s.

Computer packages can be used to perform the analysis of variance (see Program 
Note 12.1 on the website). The computer output shows the ANOVA table with the 
p-value associated with the F ratio along with group means and standard 
deviations.

Figure 12.2 shows box plots for the data in Table 12.1. The group means are rep-
resented by dots in the box. It appears that the difference is due mainly to the fi rst 
control group having a mean age that is much greater than the other two groups. 
When there is a statistically signifi cant difference among the group means, we can 
perform additional tests to see if we can determine the source of the differences in 
the means. The next section describes three approaches to this additional testing.

Table 12.3 ANOVA table for the ages shown in Table 12.1.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Between Groups  2  842.9 421.4 10.29
Within Groups 65 2660.8  40.9

Total (Corrected) 67 3503.7
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12.3   Multiple Comparisons
If the overall F statistic from the ANOVA is statistically signifi cant, multiple compari-
sons procedures can be used in an attempt to discover the source of the signifi cant dif-
ferences among the group means. Most of these procedures are designed to examine 
the pairwise differences among group means, although there are more general proce-
dures. The comparison of the group means is accomplished through the presentation of 
confi dence intervals for pairwise differences of group means. The use of the multiple 
comparison procedures is generally not recommended when we fail to reject the null 
hypothesis. However, exceptions may occur when certain comparisons have been 
planned in the course of the experiment.

There are many different multiple comparison procedures, and we shall present three: 
the Tukey-Kramer method, Fisher’s least signifi cant difference (LSD) method, and 
Dunnett’s method. The Tukey-Kramer method is the recommended procedure when one 
wishes to estimate simultaneously all pairwise differences among the means in a one-
way ANOVA assuming that the variances are equal (Stoline 1981). We present the LSD 
method because it is frequently used in the literature. Dunnett’s procedure is used when 
we wish to compare several groups with a specifi c group selected before the data were 
obtained (or the control group designated in the design). For example, if there were 
several new treatments and a standard treatment, we would use Dunnett’s procedure to 
compare each of the new treatments with the standard. The multiple comparison pro-
cedures presented here use the mean square within as the estimator of s2. Before pre-
senting these methods, we shall discuss error rates associated with the methods.

12.3.1   Error Rates: Individual and Family

In the pairwise comparison of the group means, many confi dence intervals are formed. 
For example, when there are three groups, we form confi dence intervals for the differ-
ences of groups 1 and 2, groups 1 and 3, and groups 2 and 3. When there are r groups, 
there are rC2 confi dence intervals for the pairwise comparisons. Thus, we see that there 
are two probabilities of errors in multiple comparison procedures. One probability of 

Figure 12.2 Box plots for the data in Table 12.1.
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330  Analysis of Variance

error is associated with each individual confi dence interval — the individual error rate. 
The other is associated with the rC2 intervals — the family of confi dence intervals — the 
family error rate. This is the rate that is usually of primary interest — the rate that we 
want to be less than or equal to a.

It is clear that if we use the t1−a /2 value in the creation of the confi dence intervals, the 
family error rate will be larger than a. If we wish to control the family error rate to be 
less than or equal to a , then we must use some value other (greater) than t1−a /2 in the 
calculation of the confi dence intervals.

12.3.2   The Tukey-Kramer Method

The Tukey-Kramer method focuses on the family error rate. It replaces tn−r,1−a /2 in the 
confi dence interval for the difference of two group means by qr n r, ,− −1 2α , where q is 
the upper a value from the studentized range distribution (r is equivalent to p in Table 
B12). Table B12 shows the upper a value from the studentized range distribution (at a 
= 0.01 and 0.05). Note that the q value takes the number of possible comparisons into 
account, since its value depends on r, the number of groups.

The confi dence interval for the difference of mi and mj is
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Example 12.4

Let us calculate the confi dence intervals for the three pairwise comparisons for the 
hypothetical age data shown in Table 12.1. We shall set the family error rate to be 
0.05. The value of q3,65,0.95 is not found in Table B12. Since there is little variation in 
the value of q as n − r changes from 40 to 60 to 120 in the table, we shall use 3.40 
(= q3,60,0.95) as an approximation to the desired value. The confi dence interval for the 
difference of groups 1 and 2 is
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which yields

−7.72 ± 4.35

and the interval ranges from −12.07 to −3.37. The corresponding interval for m1 − m3 
is −5.89 to 3.61, and the interval for m2 − m3 is from 1.83 to 11.33. Both of the intervals 
involving m2 fail to contain zero, suggesting that the fi rst control group differs sig-
nifi cantly from both the study group and the second control group.

12.3.3   Fisher’s Least Signifi cant Difference Method

Fisher’s LSD method focuses on the individual error rate. When the ni are all equal, 
there is a value — the least signifi cant difference — such that if any of the differences 
in sample means are greater than that value, the difference is statistically signifi cant. If 
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a difference is greater than that value, the corresponding confi dence interval for the 
difference does not contain zero. If the number of sample observations differ across the 
groups, there is not a single least signifi cant difference.

The LSD confi dence interval looks like the ordinary confi dence interval for the dif-
ference of two means with one exception. The mean square within is used as the estima-
tor for the population variance instead of an estimator based on only data from the two 
groups being compared. The LSD confi dence interval for mi − mj is
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Example 12.5

Let us calculate the 0.05 individual error rate LSD confi dence interval for m1 − m2. 
We have
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which yields

−7.72 ± 3.62

and the interval ranges from −11.34 to −4.10. This interval is narrower than the cor-
responding Tukey-Kramer interval as it must be, since it is based on the individual 
error rate, not the family error rate used by the Tukey-Kramer procedure. The cor-
responding LSD interval for m1 − m3 ranges from −5.10 to 2.82, and the interval for 
m2 − m3 ranges from 2.62 to 10.54.

12.3.4   Dunnett’s Method

Dunnett’s method is used in situations when we wish to compare the means of several 
groups with the mean of another group that was selected in advance. For example, we 
may wish to compare the means of different dosage levels of a new medication with the 
mean of a placebo group. In our example, there are two control groups and one treat-
ment group. We wish to see if there is a difference between the two control groups and 
the treatment group (group 1). Thus, the comparisons of interest are m2 − m1 and 
m3 − m1.

The confi dence interval for mi − mj using Dunnett’s procedure is given by
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where the upper 0.005 and 0.025 levels of d are given in Table B13.
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332  Analysis of Variance

These calculations can be performed by the computer packages in conjunction with 
analysis of variance (see Program Note 12.1 on the website).

12.4   Two-Way ANOVA for the Randomized Block 
Design with m Replicates

As discussed in Chapter 6, in many situations the same experiment is conducted in 
several sites or under different conditions. In these situations, the random allocation of 
subjects takes place separately at each site or for each condition. These experiments are 
using what is called a randomized block design. The random allocation of the subjects 
to the treatments is performed separately for each block (site or condition) because it is 
thought that there may be an effect of the blocks on the outcome variable. If the subjects 
were randomly assigned ignoring the blocks, as in a completely randomized design, 
there is a chance that the block effects might be confounded with the treatment effects. 
Hence the random assignment is done separately.

Example 12.6

Let us now calculate the confi dence intervals using a family error rate of 0.05 with 
Dunnett’s method for the data used in previous examples. For the comparison of the 
fi rst control group with the treatment group, we have
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where 2.27 is the value of d2,60,0.975, and this is used as an approximation to d2,65,0.975. 
This calculation yields

7.72 ± 4.11

and the interval ranges from 3.61 to 11.83. The corresponding interval for m3 − m1 
ranges from −3.35 to 5.63. The confi dence intervals using Dunnett’s procedure are 
narrower than those provided by the Tukey-Kramer method. This is reasonable, since 
we are doing fewer comparisons with Dunnett’s procedure. Based on these intervals, 
there is a statistically signifi cant difference between the fi rst control group and the 
treatment group but no signifi cant difference between the second control group and 
the treatment group.

Example 12.7

The data in Table 12.4 are from a randomized block design with fi ve replicates per 
cell. The data are the changes in weight for moderately overweight female employees 
who participated in weight reduction programs. The women worked at one of two 
company sites: either the headquarters or a manufacturing plant. At each site, after 
a semiannual health examination, the women were randomly given memberships to 
a diet clinic or to a health club or to both. There was a control for company site 
because it was thought that there may be a difference in the effects of the weight 
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To analyze this data set, we will use a two-way ANOVA. The method of analysis is 
called two-way because there are now two independent variables: the blocking variable 
with c levels and the treatment variable with r levels. The total sum of squares of the 
dependent variable about its mean is now partitioned into a sum of squares between 
treatment groups, a sum of squares between blocks and the within-cells (error or resid-
ual) sum of squares. This partitioning, based on m observations per cell, is
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The total variation of Y about its mean (SST) is partitioned into the sum of squares 
for the row or treatment variable (SSR), the sum of squares for the column or block 

reduction programs for those who were less physically active — the headquarters 
group — compared to the women in the plant. After the next health examination, 
weight reduction was measured.

In this table, data are classifi ed by program, the row variable, and site, the column 
variable. The type of intervention program is the treatment variable with three levels, 
and the site is considered to be the blocking variable with two levels. These two 
independent variables form six cells, and the cells all have the same number of 
observations. When there are the same numbers of observations in each cell, the 
design is said to be balanced. The analysis of unbalanced data is more complicated 
and will be discussed in the last section of this chapter.

The entries in Table 12.4 can be represented symbolically as yijk, where i is an 
indicator of the program (the row variable), j represents the site (the column vari-
able), and k indicates the subject number within the ith program and jth site. The 
fi rst subscript ranges from 1 to 3, the second subscript has the value 1 or 2, and the 
third subscript ranges from 1 to 5.

We continue to use the ⋅ notation. For example, y⋅1⋅ represents Σi Σk yi1k, the sum 
of weight losses for the female employees at the offi ce site. Using this notation, the 
sample mean of the ith level of the program variable is y–i⋅⋅, the sample mean of 
the jth level of the site variable is y–⋅j⋅, and the overall sample mean is y–⋅⋅⋅. These are 
the values of these sample means:

Table 12.4 Difference of pre- and postintervention weights (pounds) after 6 months of 
participation by intervention program at two sites.

Program Offi ce Site Factory Site

Diet Clinic 6 2 10 −1 8 3 15 4 8 6
 3 4 −2 6 −2 −4 6 8 −2 3
Both Programs 8 12 7 10 5 15 8 10 16 3

Program Means Site Means  Overall Mean

Diet 6.10 Offi ce 5.07 5.83
Exercise 2.00 Factory 6.60
Both 9.40

Two-Way ANOVA for the Randomized Block Design with m Replicates  333
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variable (SSC), and the within or residual sum of squares (SSW). SSW is found by 
subtracting the sum of SSR and SSC from SST. The value of SSR is

 SSR = 2(5)[(6.10 − 5.83)2 + (2.00 − 5.83)2 + (9.40 − 5.83)2] = 274.9.

The value of SSC is similarly found and is

 SSC = 3(5)[(5.07 − 5.83)2 + (6.60 − 5.83)2] = 17.56.

Too many terms are involved to show the calculation of SST, but its value is 768.2 and 
SSW, found by subtraction, is 475.7.

We use the same approach to the analysis in the two-way ANOVA as was used in 
the one-way ANOVA. To test the hypothesis of no difference in the treatments, we use 
the F statistic calculated as the ratio of the mean square for treatment to the residual 
mean square. If the null hypothesis of no difference in the treatment means, adjusted 
for the blocking variable, is true, this F statistic follows the F distribution. The mean 
square for treatments has r − 1 degrees of freedom, and the residual mean square has 
n − r − c + 1 [= n − (r − 1) − (c − 1) − 1] degrees of freedom. Thus, the F statistic for 
the treatment variable will follow an F distribution with r − 1 and n − r − c + 1 degrees 
of freedom if there is no difference in the treatment group means. In the same way, we 
could also test the null hypothesis of no difference in the block means. The F statistic 
associated with this hypothesis follows the F distribution with c − 1 and n − r − c + 1 
degrees of freedom if this null hypothesis is true. Usually, we are not as interested in 
the hypothesis about the block means as we are in the treatment group means.

The ANOVA table for a randomized block design with m replicates per cell is shown 
in Table 12.5. Let us perform the test of no treatment effect — that is, of no difference 
in the population means associated with the three interventions at the 0.05 signifi cance 
level. The analysis for the change in weight data is shown in Table 12.6. As the calculated 
F-value of 7.51 is greater than the critical value of 3.37 (= F2,26,0.95), we reject the null 
hypothesis and conclude that the intervention programs are signifi cantly different. 
Alternatively, we can make the decision based on the p-value associated with 7.51. Since 
the p-value of 0.003 is smaller than 0.05, we draw the same conclusions. We are not 
interested in the site difference.

Since there is a difference in the treatment group means at the 0.05 signifi cance level, 
we are interested in fi nding the source of the signifi cant differences among the group 
means. Applying the Tukey-Kramer method of multiple comparisons, we fi nd that 
the 95 confi dence intervals for (m2 − m1) is (−8.85, 0.65), (m3 − m1) is (−1.45, 8.05), and 
(m3 − m2) is (2.65, 12.15). It appears that using both types of intervention is more effec-
tive than the intervention using exercise only.

What would have happened had we ignored the site variable in the preceding analy-
sis? If we assume that we would have had the same assignment of the subjects to the 

Table 12.5 ANOVA table for a randomized block design.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Treatments r − 1 SSR SSR/(r − 1) = MSR MSR/MSW
Blocks c − 1 SSC SSC/(c − 1) = MSC MSC/MSW
Residual n − r − c + 1 SSW SSW/(n − r − c + 1) = MSW

Total (Corrected) n − 1 SST
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different treatments, we can examine the effect of the use of the blocking variable. The 
residual sum of squares in the two-way ANOVA is less than or equal to the residual 
sum of squares in the corresponding one-way ANOVA, refl ecting the removal of the 
between blocks sum of squares. If the sum of squares between the blocks is large and 
its degrees of freedom are small, then the residual mean square is much smaller in the 
two-way ANOVA. This means that if the blocking variable is important, there is a 
greater chance of detecting a difference in the treatment group means using the two-way 
ANOVA than using the corresponding one-way ANOVA. The computer packages can 
be used to perform the preceding analysis including the multiple comparisons (see 
Program Note 12.2 on the website).

In the next section, we show a more general two-way analysis of variance that 
includes the interaction of the two independent variables.

12.5   Two-Way ANOVA with Interaction
In some instances, a researcher is interested in studying the effects of two factors. In 
these instances, the experimental subjects are randomly allocated to all combinations 
of levels of both factors. For example, if both the row and column factors have two levels 
each, then the subjects are randomly allocated to four groups. This type of experimental 
design is especially useful when we want to study the effects of each factor as well as 
the interaction effect of the factors with one another. Interaction exists when the differ-
ences in responses to the levels of one factor depend on the level of another factor. For 
example, in a study of byssinosis (brown-lung disease) in textile workers in North Caro-
lina (Higgins and Koch 1977), two variables of interest were whether or not the worker 
smoked and whether or not the worker was exposed to dust in the workplace. Both of 
these variables were important — that is, both smoking and being exposed were associ-
ated with a higher occurrence of byssinosis. In addition, if a worker smoked and also 
was exposed to the dust, the occurrence of byssinosis was much higher than would have 
been expected by simply adding the effects of the smoking and exposure variables. In 
this case, there is a synergistic effect — that is, an interaction of these two independent 
variables.

We have previously been concerned about interaction, although we did not use the 
term interaction when we considered the Cochran-Mantel-Haenszel procedure. We said 
that the procedure should not be used when the odds ratios were not consistent across 
the subtables. If the odds ratios are not consistent, this means that the relation between 
the dependent and independent variables depends on the levels of an extraneous or 
confounding variable — that is, there is interaction between the independent and extra-
neous variable. If the interaction exists, it does not make sense to talk about an overall 

Table 12.6 ANOVA table for weight change data from Table 12.4: Three intervention programs at 
two sites.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F p-value

Between Programs 2 274.9 137.4 7.51 0.003
Between Sites 1 17.6 17.6
Residual 26 475.7 18.3

TOTAL 29 768.2
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336  Analysis of Variance

effect of the independent variable because its effect varies with the level of the extrane-
ous or confounding variable.

Example 12.8

The data in Table 12.7 are from a two-factor experiment in a health education teacher-
training program. Three new textbooks (factor A) were tested with two methods of 
instruction (factor B), and 36 trainees were randomly allocated to the six groups with 
six subjects per group. The trainees were tested before and after four weeks of 
instruction, and the increases in test scores were recorded as shown in the table. As 
in the randomized block design, data are classifi ed by textbook, the row factor, and 
method of instruction, the column factor. In this experiment, the random allocation 
of subjects was done simultaneously to all combinations of the two sets of levels, 
whereas the randomization took place separately in each block in the randomized 
block design.

Table 12.7 Increase in test scores after four weeks of instruction using three textbooks and two 
teaching methods.

 Method of Instruction

Textbook Lecture Discussion

1 30 43 12 18 22 16 36 34 15 18 40 45
2 21 26 10 14 17 16 33 31 28 15 29 26
3 42 30 18 10 21 18 41 46 19 23 38 48

The entries in this table are also represented symbolically by yijk as in the random-
ized block design with replicates. Several means again will be used in the analysis. 
The means here include the cell means (y–ij⋅), two sets of marginal means — row (y–i⋅⋅) 
and column (y–⋅j⋅) — and the overall mean (y–⋅⋅⋅). The values of these means are as 
follows:

 Methods of Instruction

Textbook Lecture Discussion Marginal Book Means

1 23.50 31.33 27.42
2 17.33 27.00 22.17
3 23.17 35.83 29.50

Marginal Method Means 21.33 31.39 26.36 (Overall Mean)

We analyze this data set using a two-way ANOVA with interaction. For the random-
ized block design, we used a two-way ANOVA, ignoring interaction. The researcher for 
this experiment could have used two separate completely randomized experiments (one-
way ANOVAs) — one to compare the three textbooks and the other to compare the two 
types of instructional methods. However, based on these two separate experiments, the 
researcher would not know whether any textbook works better with one instructional 
method than the other. The effects of the textbooks may differ across the instructional 
methods. Interaction measures the difference in the textbook effects across the two 
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instructional methods. If the distribution of the mean increase in test scores for the three 
textbook types for those taught by lecture differs from the corresponding distribution 
for those taught by discussion, there is interaction. The average effects of textbooks 
across both types of instruction and the average instructional effects across all textbooks 
are measures of the main effects of the two independent variables.

If there is an interaction of the two independent variables, then usually the interaction 
terms are of more interest than the main effects of the two independent variables. This 
is because, if there is an interaction, the effect of one independent variable depends — it 
changes — as the level of the other independent variable changes. Hence, in our analysis, 
we must fi rst examine the test of hypothesis that there is no interaction before consider-
ing the test of no main effects of the independent variables.

If there is interaction, we can examine the cell means in an attempt to discover the 
nature of the interaction. If there is no evidence of an interaction, then we consider the 
hypotheses about the main effects. In this case, some statisticians would remove the 
interaction term from the analysis — that is, incorporate its sum of squares and degrees 
of freedom into the error term before calculating the F statistics for the main effects. 
The decision to incorporate or not to incorporate the nonsignifi cant interaction term 
into the error term usually has little effect on the results.

In order to include interaction in the analysis, the total sum of squares (SST) of the 
dependent variable about its mean is now partitioned into a sum of squares for the row 
factor R (SSR), a sum of squares for the column factor C (SSC), a sum of squares for 
interaction between factor R and factor C (SSRC), and the error sum of squares (SSE). 
As before, we shall use the symbols r and c for the numbers of levels for factors R and 
C, respectively, and use m to represent the number of replicates in each of the cells 
formed by the crosstabulation of factors R and C. This partitioning of the total sum of 
squares is expressed symbolically as
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The rest of the analytic approach is the same as before. The mean squares for the 
main effects and the interaction are calculated by dividing the sums of squares by 
appropriate degrees of freedom. The mean squares for factors R and C have r − 1 and 
c − 1 degrees of freedom, respectively. The mean square for interaction has (r − 1)(c − 1) 
degrees of freedom, and the error mean square has n − rc [= rc(m − 1)] degrees of 
freedom. The error mean square is then used as the denominator in the calculation of 
the F statistics for the two main effects and interaction. The ANOVA table for a two-
factor experimental design with interaction is shown in Table 12.8.

The calculations of the sums of squares, similar to those shown previously in the 
randomized block analysis, are not shown here but are summarized in Table 12.9.

Let us perform the tests of hypotheses at the 0.05 signifi cance level. The F statistic 
and its associated p-value for interaction indicate that there is no statistically signifi cant 
interaction of the two independent variables. Since this is the case, we can now examine 
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338  Analysis of Variance

the F statistics associated with the hypotheses of no difference in the test score improve-
ment between the two methods of instruction and among the three textbooks. There is 
a statistically signifi cant effect for the methods of instruction — a p-value less than 0.05 
— but no signifi cant effect associated with the textbooks.

If we had removed the interaction term from the analysis after fi nding that it was not 
important, the error sum of squares would have been 3135.5 (= 35.7 + 3099.8), and there 
would have been 32 degrees of freedom associated with this error sum of squares. The 
error mean square would have been 97.98 instead of 103.3, and the F ratios for textbooks 
and methods of instruction would have been 1.75 and 9.29, respectively.

Let us explore further the preceding analytical results in relation to the cell means 
that were just calculated and are repeated here for our convenience. The lack of a sig-
nifi cant main effect for textbooks is refl ected in the marginal means for textbooks. The 
fi rst and third textbooks appear to be a little more effective than the second book, but 
the ANOVA results indicated that these differences are not statistically signifi cant. On 
the other hand, the discussion method was associated with a much greater increase — 
about 10 points — in test scores than the lecture method and this difference was statisti-
cally signifi cant. The lack of an interaction effect is refl ected in the cell means that are 
plotted in Figure 12.3.

Table 12.8 ANOVA table for a two-factor design with interaction.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F

Factor R r − 1 SSR SSR/(r − 1) = MSR MSR/MSE
Factor C c − 1 SSC SSC/(c − 1) = MSC MSC/MSE
Interaction (r − 1)(c − 1) SSRC SSRC/(r − 1)(c − 1) = MSRC MSRC/MSE
Error n − rc SSE SSE/(n − rc) = MSE

Total (Corrected) n − 1 SST

Table 12.9 ANOVA table for test score increase data in Table 12.6 by combinations of three textbooks 
and two methods of instruction.

Source DF SS MS F p-value

Textbooks 2 342.7 171.4 1.66 0.207
Methods of Instruction 1 910.0 910.0 8.81 0.006
Interaction 2 35.7 17.9 0.17 0.842
Error 30 3099.8 103.3

Total 35 4388.3

 Methods of Instruction

Textbook Lecture Discussion Marginal Book Means

1 23.50 31.33 27.42
2 17.33 27.00 22.17
3 23.17 35.83 29.50

Marginal Method Means 21.33 31.39 26.36 (Overall Mean)

Interaction measures the degree of similarity between the responses to factor A at 
different levels of factor B. The lines connecting the three cell means for the discussion 
method are roughly parallel with the lines connecting cell means for the lecture method, 
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refl ecting the absence of interaction. If these two lines were not parallel or crossed each 
other, then the interaction effect would have been statistically signifi cant. If a signifi cant 
interaction is present, we need to examine the cell means carefully to draw appropriate 
conclusions. Computer packages can be used to conduct the preceding analysis (see 
Program Note 12.2 on the website).

12.6   Linear Model Representation of the ANOVA
As shown in the last two sections, a two-way ANOVA can be used with or without 
interaction, which suggests that we need to specify the model to be used in the analysis. 
The choice of a model is dependent on how the data are collected and how we consider 
each effect to be specifi ed. We consider this modeling aspect of ANOVA in this 
section.

In the ANOVA, we have partitioned the sum of squares of Y about its mean into 
within and between components in the completely randomized design or into treatment, 
blocks, and within components in the randomized block design. Underlying these parti-
tions are linear models that show the relation between the dependent variable and the 
independent — treatment and/or blocking — variables. In the following sections, we 
show these models as well as the model with interaction. From these models, we can 
also see that it is possible to extend the ANOVA method of analysis to include combina-
tions of the independent variables as well as including more than two independent 
variables.

12.6.1   The Completely Randomized Design

One representation of the linear model underlying the completely randomized design 
shows the dependent variable being equal to a constant plus a treatment effect plus 
individual variation — that is,

Figure 12.3 Plot of 
mean scores by 
methods of instruction 
on three textbooks (A = 
lecture method; B = 
discussion method).
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340  Analysis of Variance

 yij = m + ai + eij

for i ranging from 1 to r and j going from 1 to ni. The value of the jth observation of 
the dependent variable at the ith treatment level is yij. There are r levels of the treatment 
variable and ni observations of Y at the ith treatment level. The constant is represented 
by m , and the effect of the ith treatment level is represented by a. i. Since not everyone 
who has received the ith level of treatment will have the same value of the dependent 
variable, this individual variation, the departure from the sum of m plus a. i, is represented 
by eij.

Note that this model can be rewritten as follows:

 yij = m + xij ai + eij

where xij is an indicator variable which has the value of 1 if the ijth subject has received 
the ith level of the treatment and 0 otherwise. The X variable here simply indicates which 
level of treatment the person has received. We do not use this representation of the model 
here, but we shall refer to it in the next chapter.

In this linear model, there are r + 1 population parameters — the constant m and the 
ra’s; however, there are only r different treatment levels or groups. Since we can only 
estimate the same number of parameters as there are groups, to obtain estimators for r 
of the parameters, we must make some assumption about them. The appendix on the 
linear model in Forthofer and Lehnen (1981) provides a presentation of a number of 
assumptions that we could make. In this book, we shall measure the effect of the treat-
ment levels from the effect of the rth treatment level. This means that ar is assumed to 
be zero.

Now let us rewrite the linear model in terms of the population means. The equation 
for the ith level becomes

 mi = m + ai

and the representation of the model for all r levels is

m1 = m + a1

m2 = m + a2

.  .  .

mr-1 = m + ar−1

mr = m.

From these equations, we can see that the constant term is the mean of the rth level, 
and the effect of the other levels — a1, a2,  .  .  .  , ar−1 — are measured from mr (or m). 
For example, using the fi rst of these equations to solve for a1, we have

 a1 = m1 − m = m1 − mr.

This equation makes it clear that we are measuring the effects of the fi rst level relative 
to the effect of the rth level, and the same is true for levels 2 through r − 1.

The sample estimator of the ith effect, âi, is obtained by substituting the sample 
means for the population means — that is,
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 âi = y–i⋅ − y–r⋅⋅

and the estimator of m is simply y–r⋅.

The t test for comparing the means of two populations, assuming equal variances, 
also fi ts into the ANOVA framework. In this case, r is 2, and the preceding model still 
applies.

12.6.2   The Randomized Block Design with m Replicates

A linear model underlying the randomized block design has the dependent variable 
being equal to a constant plus the effect of the ith level of the treatment variable plus 
the jth block effect plus the individual variation term. In symbols, this is

 yijk = m + ai + bj + eijk

where i goes from 1 to r, j ranges from 1 to c, and k ranges from 1 to m.

Just as in the completely randomized situation, the effects of the levels of the treat-
ment variable are measured relative to the rth level of the treatment variable. In the 
same way, the effects of the levels of the blocking variable are measured relative to the 
cth level of the blocking variable. The defi nition of the parameters in terms of the mij is 
complicated and will not be shown for this model, but it will be shown for the model 
in the next section.

12.6.3   Two-Way ANOVA with Interaction

The model for this situation is similar to the preceding two-way ANOVA model, except 
that it includes the interaction term, denoted by bij, in the model. The model is

 yijk = m + ai + bj + abij + eijk

where i goes from 1 to r, j ranges from 1 to c, and k ranges from 1 to m.

The main effect terms in the model, the ai and the bj, again are all measured relative 
to their last level. The representation of this model in terms of the cell means, the mij, 
for the fi rst row is

m11 = m + a1 + b1 + ab11

m12 = m + a1 + b2 + ab12

.  .  .

m1c = m + a1.

Note that there is no bc term or any a b1c terms in the fi nal equation. Since the cth level 
is the reference level for the column variable, bc is taken to be zero. In addition, interac-
tion terms having either an r or a c as a subscript are reference levels, and these interac-
tion terms are also assumed to be zero. This pattern is repeated for the other rows except 
the last one.

m21 = m + a2 + b1 + ab21

m22 = m + a2 + b2 + ab22
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.  .  .

m2c = m + a2

.  .  .

mr1 = m + b1

mr2 = m + b2

.  .  .

mrc = m.

For the cells in the rth row, there is no ar effect shown, since the rth level is the refer-
ence level for the row variable and a. r is taken to be zero. There are also no abrj terms 
in the last row, since the rth level is also a reference level for the interaction terms.

Using these equations, we obtain the following defi nitions of the parameters (m , a , 
b, and ab) in terms of the cell means. For example, from the last equation, we see that 
the constant term in the model is simply the mean of the cell formed by the rth row and 
cth column — that is, m = mrc.

Once we have expressed m in terms of the cell means, we can fi nd the estimate of ai 
from the equation mic = m + ai. This gives the solution that ai = mic − mrc, where we have 
replaced mrc for m. This defi nition for a. i is reasonable, as it compares the mean of the 
cell in the ith row and cth column with the mean of the cell in the rth row and cth 
column. It is comparing a cell in the ith row with its reference cell in the rth row. The 
column effect, bj, is similarly defi ned as bj = mrj − mrc.

The defi nition of the interaction term is abij = (mij − mic) − (mrj − mrc). The rcth cell 
is the reference cell and the other parameters are defi ned in terms of it. The ijth interac-
tion parameter focuses on the difference of the jth and cth columns, and compares that 
difference for the ith and rth rows. If there is no interaction, the difference of the jth 
and cth columns is the same over all the rows.

12.7   ANOVA with Unequal Numbers of 
Observations in Subgroups

In the preceding discussion, we allowed the number of observations in each treatment 
to vary for the one-way ANOVA model, but we assumed an equal number of observa-
tions in each cell for the two-way ANOVA models. However, it is not always possible 
to have an equal number of observations on all treatment combinations. Even balanced 
designs often become unbalanced because people may drop out of the study or some of 
the data are missing. This imbalance in the size of subclasses introduces complications 
in the analysis. The main diffi culty is that there is no unique way of fi nding the sums-
of-squares corresponding to each main effect and each interaction.

One method of calculating the sums of squares is to consider the factors and 
interaction(s) sequentially. The effect of the fi rst factor entered into the model is calcu-
lated unconditionally, but the second factor is evaluated conditional upon whatever 
factor was entered fi rst. Using the notation used for conditional probability, the effect 
of the second factor (s) conditional on the fi rst factor ( f ) can be written as s|f. The par-
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titioned sums of squares obtained by sequential fi tting are labeled as Type I SS in the 
computer output. The sequential sums of squares will add up to the total sum of 
squares.

One problem with the sequential approach is that the factors are treated differently 
depending on the order of entry, and effects of factors are diffi cult to interpret. An 
alternative approach is to consider the effect of each factor adjusted for all the other 
factors in the model. This approach produces adjusted sums of squares (called Type III 
SS) that do not add up to the total SS unless the data are balanced. The adjusted sums 
of squares are generally used when testing the effect of each factor (Maxwell and 
Delaney 1990). We will use this approach in examining an example following.

Computer packages provide Type III and Type I sums of squares by default. There 
are two other types of sums of squares, but they are generally of lesser interest. In cases 
where the interaction terms are unimportant and a main effect needs to be examined at 
each level of the other factors, Type I sums of squares are recommended (Nelder 
1977).

Table 12.10 Creatinine measurements (mg/dL) by sex and age group, DIG40.

Cell Sex Age Creatinine Measurements (mg/dL)

1,1 Male <56 1.600 1.300 1.159 1.307 1.886 1.034 0.900 1.398 1.307
1,2 Male ≥56 2.682 1.091 1.250 1.705 2.000 1.227 1.100 2.239 1.300 1.614
   1.200 1.455 1.489 1.700 1.307 1.200 1.273 1.300 1.659 1.261
   0.900
2,1 Female <56 1.386 0.900 1.000 1.148 1.170
2,2 Female ≥56 1.534 0.900 0.900 1.352 0.909

Example 12.9

Let us consider the data shown in Table 12.10. This table represents a cross-
classifi cation of creatinine measurements by sex and age (categorized into two 
groups: under 56 and 56 & over) for the 40 patients in DIG40 that was introduced 
in Chapter 3. The numbers of observations in the four cells are not equal, and, there-
fore, we will use the general linear models procedure for these unbalanced data.

Before analyzing the data by ANOVA, let us look at the cell means. These are 
shown here in a 2 by 2 table:

 Ages

Sex <56 ≥56 Difference

Male 1.3212 1.4739 −0.1527
Female 1.1236 1.1113  0.0123

Difference 0.1976 0.3626

The effect of the sex variable (difference between male and female) can be calculated 
at each level of the age variable. Likewise, the effect of the age variable can be seen 
in the difference between the two age groups at each level of the sex variable. The 
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It is usually necessary to use a computer package for performing a general linear 
models analysis (see Program Note 12.3 on the website).

Choosing an appropriate model for ANOVA is not straightforward, especially for an 
unbalanced data. As we saw in Chapter 6, it is important to strive for a balanced design 
to alleviate the complications in the analysis.

Table 12.11 ANOVA by the general linear models procedure for Table 12.10 (with interaction).

  Adjusted (Type III) Sequential SS
Source DF SS MS F P (Type I)

Sex  1 0.5519 0.5519 4.21 0.048 0.7124
Age  1 0.0407 0.0407 0.31 0.581 0.1042
Sex*Age  1 0.0427 0.0427 0.33 0.572 0.0427
Error 36 4.7247 0.1312   4.7247

Total 39 5.5839    5.5839

Table 12.12 ANOVA by general linear models procedure for Table 12.10 (without interaction).

  Adjusted (Type III) Sequential SS
Source DF SS MS F P (Type I)

Sex  1 0.5951 0.5951 4.62 0.038 0.7124
Age  1 0.1042 0.1042 0.81 0.374 0.1042
Error 37 4.7674 0.1288   4.7674

Total 39 5.5839    5.5839

effect of the sex variable is considerably larger than the age effect. The effects of the 
sex variable at two levels of age are in the same direction, although the effect of 
the sex variable is larger for the older age group, suggesting that the interaction of 
the sex and age variables on creatinine is likely to be nonsignifi cant.

Table 12.11 shows the results of ANOVA by the general linear models procedure. 
The model includes two main effects and the interaction of sex and age. Adjusted 
sums of squares are shown, and the analysis of variance is carried out based on Type 
III sums of squares to assess the effect of each term. Sequential sums of squares are 
shown in the last column. Note that sequential sum of squares of the last term listed 
in the model (the interaction term in this case) is the same as the Type III sum of 
squares for the factor because it is adjusted to all other factors in the model. The 
effect of the sex variable is signifi cant, while the effect of the age variable is not.

Since the interaction effect is unimportant, we dropped the interaction term from 
the model and repeated the analysis. The results are shown in Table 12.12. Note that 
the sequential sum of squares for age is the same as the adjusted sum of squares for 
the factor because it is the last term in the model. Note also that the sum of squares 
due to the interaction is now included in the error term. Again, the sex variable effect 
is signifi cant, while the age effect is not.
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Conclusion
In this chapter we presented several basic models of analysis of variance. The one-way 
ANOVA is used to analyze data from a completely randomized experimental design. 
The two-way ANOVA can be used for a randomized block design as well as for a two-
factor design with interaction. To use these analytical methods properly, we must be 
aware of how the data were collected and make sure that the data meet the ANOVA 
assumptions. Finally, we discussed the problems and methods for analyzing unbalanced 
data. In the next chapter, we will expand the linear model to regression models.

EXERCISES

12.1 The data shown here, taken from Brogan and Kutner (1980), are the change in 
the maximal rate of urea synthesis (MRUS) level for cirrhotic patients who 
underwent either a standard operation (a nonselective shunt) or a new procedure 
(a selective shunt). The purpose of the operations was to improve liver function, 
measured by MRUS. A low value of MRUS is associated with poor liver func-
tion. Patients in the nonselective shunt group are divided into two groups based 
on the preoperative MRUS values (≤40 and >40).

Change in Maximal Rate of Urea Synthesis (MRUS)
Level (mg Urea N/hr/kg Body Weight) by Group

Group Change in MRUS Values

Selective Shunt  −3 20  −6  −5  −3  −3  −6 12
Nonselective Shunt I −18 −4 −18 −18  −6 −18
Nonselective Shunt II −24 −7 −15   4 −14  −8 −11

 Perform an analysis of variance of these data at the 0.05 signifi cance level to 
determine if there is a difference in the three groups. If there is a signifi cant 
difference, use an appropriate multiple comparison procedure to fi nd the source 
of the difference.

12.2 In Chapter 8, we used the t test to compare the proportion of caloric intake from 
fat for fi fth- and sixth-grade boys compared to seventh- and eighth-grade boys. 
The calculated t test statistic was −0.727 (Example 8.9). Perform a one-way 
ANOVA on these data in Table 7.7 and compare your results with the t test 
approach. How does the t statistic compare with the F statistic?

12.3 For the weight change data shown in Table 12.4, we were concerned about the 
level of physical activity of the women. Instead of using the site — headquarters 
or plant — as a way of controlling for physical activity, how else might we have 
controlled for the physical activity? Do you think that a control group — no 
intervention — should have been used? Explain your reasoning. Would you do 
anything to determine whether or not the women used the memberships? What, 
if any, other variables should be included in the analysis?

12.4 To investigate publication bias, 75 referees for one journal were randomly 
assigned to receive one of fi ve versions of a manuscript (Dickersin 1990). All 
versions were identical in the Introduction and Methods sections but varied in 
either the Results or Discussion sections. The fi rst and second groups received 
versions with either positive or negative results, respectively. The third and 
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fourth groups received versions with mixed results and either positive or nega-
tive discussion. The fi fth group was asked evaluate the manuscript on the basis 
of the Methods section, and no data were provided. The referees used a scale 
of 0 to 6 (low to high) to rate different aspects of the manuscript. The average 
scores for three aspects are shown here:

 No. of Mean Ratings

Manuscript Version Referees Methods Scientifi c Contribution Publication Merit

Positive Results 12 4.2 4.3 3.2
Negative Results 14 2.4 2.4 1.8
Mixed Results with 13 2.5 1.6 0.5
 Positive Discussion
Mixed Results with 14 2.7 1.7 1.4
 Negative Discussion
Methods Only 14 3.4 4.5 3.4

 State an appropriate linear model for this experiment using scientifi c contribu-
tion as the dependent variable. What are the null and alternative hypotheses of 
interest for this model? Assuming that the standard deviations for the scientifi c 
contribution score for the fi ve groups are 1.1, 0.9, 0.7, 0.8, and 1.1, respectively, 
perform an analysis of variance of these data at the 0.05 signifi cance level to 
determine if there is a bias in refereeing scientifi c papers for this journal. If 
there is a signifi cant difference, use an appropriate multiple comparison proce-
dure to fi nd the source of the bias. State your conclusions clearly.

12.5 In an investigation of the effect of smoking on work performance under differ-
ent lighting conditions in a large company, a random sample of nine male 
workers was selected from each of the three smoking status groups: nonsmok-
ers, moderate smokers, and heavy smokers. Each sample was randomly assigned 
to three working environments with different levels of lighting. The time to 
complete a standard assembling task was recorded in minutes. The sums of 
squares were as follows:

Source df SS MS F p-value

Smoking Status   84.90
Lighting Conditions  298.07
Interaction    2.81
Error   59.25

Total  445.03

 Perform an analysis of variance for these data to examine the interaction of the 
variables at the 0.05 signifi cance level. If there is no signifi cant interaction, test 
whether or not the smoking and lighting conditions variables have signifi cant 
effects on the workers’ performance and state your conclusions.

12.6 The midterm and fi nal test scores of 12 students in a class are recorded as 
follows:
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 These are paired data. First, perform the paired t test (discussed in Chapter 8) 
to compare the two sets of test scores. Now perform a two-way ANOVA for the 
randomized block design with two replicates (an additive model), considering 
students as blocks, and compare your results with the paired t test approach. 
How does the t statistic compare with the F statistic for the test variable? Can 
you draw the same conclusion?

12.7 A randomized study was conducted to compare the effects of two intervention 
procedures (tracking with outreach and provider prompting) to raise immuniza-
tion in primary care clinics serving impoverished children (Rodewald et al. 
1999). The study used a 2 by 2 factorial design, and each intervention had two 
levels (1 = no intervention; 2 = intervention). After 18 months of intervention 
the immunization status was assessed. Two major outcome measures were the 
percentage of immunization and the number of days of delay in immunization. 
The authors claim that the two-way ANOVA was used to test for effects of each 
of the interventions on the outcome measures. They stated that the interaction 
was insignifi cant. The number of children allocated to each group was slightly 
different and the number of children who completed the assessment of the out-
comes also varied as shown here:

 Students

Test 1 2 3 4 5 6 7 8 9 10 11 12

Midterm 80 85 65 77 58 98 91 72 62 82 45 42
Final 78 90 72 80 71 92 93 70 73 85 60 61

 Treatment Groups Number Number Percent Mean Days
Prompting Outreach (Group) Allocated Completed Immunized of Delaya

1 1 (no intervention) 769 719 74.0 140.0
1 2 (outreach only) 715 630 95.1  76.5
2 1 (prompting only) 801 744 75.9 133.2
2 2 (both interventions) 732 648 95.1  69.1
aMean days of delay in immunization

 Discuss whether the two-way ANOVA was appropriate for the two major 
outcome measures shown. If you think the ANOVA is inappropriate for any of 
the outcome measures, what statistical method would you recommend? If you 
think the ANOVA is appropriate for any of outcome measure, would you accept 
the claim of no interaction based on these data? A considerable number of 
subjects were lost during the course of the study, and the number of dropouts 
varies between the four groups. Discuss how the differential loss of the subjects 
might impact the study outcome.
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