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This chapter introduces methods for analyzing data collected from a longitudinal study 
in which a group of subjects are followed for a defi ned time period or until some speci-
fi ed event occurs. We frequently encounter such data in the health fi eld — for example, 
newly diagnosed cancer patients in a registry were followed annually until they died. 
Another example consists of smokers who completed a smoking cessation program and 
were then contacted every three months to fi nd out whether or not they had relapsed. 
The focus in these studies is the length of time from a meaningful starting point until 
the time at which either some well-defi ned event happens, such as death or relapse to a 
certain condition, or the study ends. The data from such studies are called survival data. 
We have previously encountered survival data in our consideration of the life table in 
Chapter 4. In this chapter, we will consider a special type of life table: the follow-up 
life table.

We fi rst discuss the collection and organization of the data. This discussion is fol-
lowed by the presentation of two related methods for analyzing survival data. The life-
table method is used for larger data sets, and the product-limit method is generally used 
for smaller data sets. We also show how the CMH test statistic from Chapter 10 can be 
used for comparing two survival distributions.

11.1   Data Collection in Follow-up Studies
Perhaps an example best illustrates the nature of the data required for a survival 
analysis.

11

Example 11.1

The California Tumor Registry (1963) identifi ed a total of 2711 females with ovarian 
cancer initially diagnosed between 1942 and 1956 in 37 hospitals in California. The 
follow-up system of the Central Registry was designed to identify deaths through 
the statewide vital registration system and to facilitate the follow-up activities of the 
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298  Analysis of Survival Data

participating hospital registries. The Central Registry received yearly follow-up 
information on each case. The registry program served not only to furnish the infor-
mation essential for statistical study of cancer cases, but also to stimulate periodic 
medical checkups of the cancer patients. Based on the data accumulated in the 
Central Registry up to 1957, the researchers were able to analyze ovarian cancer 
patients who had been followed for up to 17 years.

In this data set, patients were observed for different lengths of time and not all 
of the patients had died by 1957. In addition, others could not be contacted — that 
is, they were lost to follow-up. Despite the different lengths of observation and the 
incomplete observations, it is possible to analyze the survival experience of these 
patients. An appropriate survival analysis is not restricted to those who had died, 
but it incorporates all the patients who entered the study. It is essential to include all 
those who entered the study because the exclusion of any patient from the analysis 
could introduce a selection bias as well as reducing the sample size.

The survival time cannot be calculated for those patients who were still alive at 
the closing date of the study or for those patients whose survival status was unknown. 
For these incomplete observations, the survival time is said to be censored. Those 
patients who were still alive at the closing date are known as withdrawn alive, and 
those patients whose status could not be assessed (because, for example, they moved 
away or refused to participate) are known as lost-to-follow-up.

To include the censored observations in the analysis, we calculate a censored 
survival time from the date of diagnosis to (1) the closing date of the study for those 
withdrawn alive and (2) the last known date of observation for the lost-to-follow-up. 
This allows the number of years from the date of diagnosis to the date of death or 
to the termination date to be calculated for each patient in the study.

By tabulating the uncensored and censored survival times of all 2711 female 
ovarian cancer patients by one-year intervals, we obtain the data shown in Table 11.1. 
Within the fi rst year after diagnosis, 1421 of 2711 patients had died and 68 were 
lost-to-follow-up. There were no patients in the category withdrawn alive since every 
patient was followed for at least one year. The last column of the table can be created 
by adding the total column entries from the bottom. This reverse cumulative total 
indicates the number of patients alive at the beginning of each interval. The entry 
in the fi rst row of this column is the total number of patients in the study. The other 
entries in this last column can also be found by subtracting the sum of the number 
of deaths, lost-to-follow-up, and withdrawn alive from the number of persons who 
started the previous interval. For example, the second entry in this column is 1222, 
which is determined by subtracting the sum of 1421, 68, and 0 from 2711, the number 
of subjects who began the previous interval.

The essential data items required for a survival analysis include di, the number 
of deaths; li, the number of patients lost-to-follow-up; wi, the number of patients 
withdrawn alive; and ni, the number of patients alive at the beginning of the ith 
interval. These data, presented in Table 11.1, are analyzed by the life-table method 
presented in the next section.
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11.2   The Life-Table Method
In Chapter 4, the population life table was introduced to illustrate the idea of probability 
and its connection to life expectancy. The estimated life expectancy is generally used 
as a descriptive statistic. To use the life-table technique as an analytical tool, we shall 
combine ideas from Chapter 5 on probability distributions with the life-table analysis 
framework.

In survival analysis, our focus is on the length of survival. Let X be a continuous 
random variable representing survival time. Consider a new function, the survival func-
tion, defi ned in symbols as

 S(x) = Pr(X > x).

This function is the probability that a subject survives beyond time x. Since F(x), the 
cdf, is defi ned as

 F(x) = Pr(X ≤ x)

the survival function is one minus the cdf — that is,

 S(x) = 1 − F(x).

It is more convenient to work with S(x) rather than F(x), since we usually talk about 
survival being greater than some value rather than being less than a value.

The idea of a survival function is contained in the population life table presented in 
Chapter 4. It is represented by the lx column, the number of survivors at the beginning 
of each age interval. Specifi cally, S(x) in the population life table is lx/l0. Recall that the 
lx column starts with l0, usually set at 100,000, and all subsequent lx values are derived 

Table 11.1 Survival times for ovarian cancer patients initially diagnosed 1942–1956, followed 
to 1957.

  Censored Number
Years after Death Lost Withdrawn  Entering Interval
Diagnosis di li wi Total ni

 0–1 1,421 68 0 1,489 2,711
 1–2 335 19 37 391 1,222
 2–3 132 17 84 233 831
 3–4 64 10 47 121 598
 4–5 44 12 48 104 477
 5–6 20 12 39 71 373
 6–7 19 10 35 64 302
 7–8 14 14 19 47 238
 8–9 7 10 25 42 191
 9–10 7 9 19 35 149
10–11 5 4 14 23 114
11–12 5 4 17 26 91
12–13 1 4 11 16 65
13–14 3 1 15 19 49
14–15 1 0 13 14 30
15–16 0 0 7 7 16
16–17 0 0 9 9 9

Source: California Tumor Registry, 1963
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300  Analysis of Survival Data

by multiplying the conditional probability of surviving in an age interval by the number 
of those who have survived all previous age intervals.

To analyze the data in Table 11.1 by the life-table method, we shall estimate the sur-
vival distribution in the same manner. The results of these calculations are shown in 
Table 11.2. The fi rst two columns (the time interval and the number of deaths) are 
transferred from Table 11.1. The other columns show the results of the life-table 
analysis.

Table 11.2 Estimates of probabilities and standard errors for ovarian cancer patients.

     (6)
  (3) Conditional Probability Cumulative (7)
(1) (2) Exposed (4) (5) Probability Standard
Years after Deaths to Risk Dying Surviving Surviving Error
Diagnosis di n′i qi (1 − qi) Pi SE(Pi)

 0–1 1,421 2,677.0 0.531 0.469 1.000 0.0000
 1–2 335 1,194.0 0.281 0.719 0.469 0.0096
 2–3 132 780.5 0.169 0.831 0.338 0.0092
 3–4 64 569.5 0.112 0.888 0.280 0.0089
 4–5 44 447.0 0.098 0.902 0.249 0.0087
 5–6 20 347.5 0.058 0.942 0.224 0.0086
 6–7 19 279.5 0.068 0.932 0.212 0.0086
 7–8 14 221.5 0.063 0.937 0.197 0.0086
 8–9 7 173.5 0.040 0.960 0.185 0.0087
 9–10 7 135.0 0.052 0.948 0.177 0.0088
10–11 5 105.0 0.048 0.952 0.168 0.0090
11–12 5 80.5 0.062 0.938 0.160 0.0093
12–13 1 57.5 0.017 0.983 0.150 0.0097
13–14 3 41.0 0.073 0.927 0.147 0.0099
14–15 1 23.5 0.043 0.957 0.137 0.0109
15–16 0 12.5 0.000 1.000 0.131 0.0119
16–17 0 4.5 0.000 1.000 0.131 0.0119

The fi rst task is to estimate the conditional probability of dying for each interval of 
observation. When there is no censoring in an interval, the estimate of the probability 
of dying in the interval is simply the ratio of the number who died during the interval 
to the number alive at the beginning of the interval. However, it is not appropriate to 
use this ratio as the estimator of the probability of dying if censoring occurred in the 
interval. The use of this denominator, the number alive at the beginning of the interval, 
means that those who were lost-to-follow-up or withdrawn alive during the interval are 
treated as if they survived the entire interval. Thus, using this ratio when there is cen-
soring likely results in an underestimate of the probability of dying in the interval.

The problem with the censored individuals is that we do not know their actual length 
of survival during the interval. We do know that it is extremely unlikely that they all 
survived the entire interval. The assumption used most often in practice (although there 
are other more reasonable assumptions) is that the censored individuals survived to the 
midpoint of the interval. Under this assumption, we can calculate qi, an estimator of the 
conditional probability of dying during the ith interval, as follows:
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The Life-Table Method  301

The denominator in the above equation is the effective number of subjects exposed to 
the risk of dying during the interval, denoted by n′i. Table 11.2 shows the estimated 
effective number of patients exposed to the risk of dying in column 3 and the estimate 
of the conditional probability of dying in column 4. The use of n′i implies that those 
patients who were lost or withdrawn were subjected to one half the risk of dying during 
the interval.

The estimator of the conditional probability of survival in the ith interval is one 
minus the estimator of the probability of dying, that is, 1 − qi. The result of this subtrac-
tion is shown in column 5.

Next, we calculate Pi, the sample estimator of the probability of surviving until the 
beginning of the ith interval. The set of the Pi are used to estimate the survival distribu-
tion S(x). By defi nition, P1 = 1, and the estimators of the other survival probabilities are 
calculated in the following manner:

 P2 = (1 − q1), P3 = (1 − q2) (1 − q1),  .  .  .

and in general

 Pi = (1 − qi−1)(1 − qi−2)  .  .  .  (1 − q1) = (1 − qi−1) Pi−1.

The results of these products are shown in column 6 of Table 11.2. From column 6, 
we see that the estimate of the one-year survival probability for ovarian cancer pati-
ents in California who were diagnosed during the 1942–1956 period was 0.47 and the 
estimate of the fi ve-year survival probability was 0.22. More recent statistics estimate 
the fi ve-year survival probability for ovarian cancer to be 0.39 for white females and 
0.38 for black females in the 1981–1986 period (National Cancer Institute 1990), 
suggesting some improvement in cancer treatment. However, this improvement may 
be due more to the early detection of ovarian cancer in recent years. Cancer-related 
statistics, including estimates of survival rates, are routinely provided by the 
National Cancer Institute’s SEER (Surveillance, Epidemiology, and End Results) 
program, which includes many population-based cancer registries throughout the 
United States.

Besides knowing the point estimate of a population survival probability, we also wish 
to have a confi dence interval for the survival probability. We shall assume that, in large 
samples, an estimated cumulative survival probability approximately follows a normal 
distribution. The variance of the estimated cumulative survival probability is estimated 
by
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The estimated standard errors (the square root of the estimated variance) of the Pi are 
shown in column 7 of Table 11.2.

Given these estimated standard errors plus the assumption of the approximate nor-
mality of the estimated survival probabilities, we can calculate confi dence intervals for 
the survival probabilities. The approximate (1 − a)*100 percent confi dence interval for 
a survival probability is given by

 Pi ± (z1−a /2) s.e.(Pi)].
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For example, an approximate 95 percent confi dence interval for the fi ve-year survival 
probability is

 0.224 − 1.96 (0.0086) to 0.224 + 1.96 (0.0086)

or from 0.207 to 0.241.

Although this procedure is adequate in most cases, there are other more complicated 
approaches to constructing a confi dence interval for Pi that cause the actual confi dence 
level to agree more closely with the nominal confi dence level, especially for small 
samples (Thomas and Grunkemeier 1975).

It is also possible to calculate the confi dence interval for the difference between two 
survival probabilities from different study groups — for example, the fi ve-year survival 
probability of ovarian cancer for white females and black females — by using the pro-
cedure discussed in Chapter 7.

Let us further explore the estimated survival distribution by creating Figure 11.1, the 
plot of the cumulative survival probabilities against the years after diagnosis. Although 
we have values of Pi for only the integer values of t, we have connected the points to 
show the shape of the survival distribution. It starts with survival probability of 1 at 
time 0 and drops quickly as time progresses, indicating a very high early mortality for 
ovarian cancer patients. Note that the survival curve does not descend all the way to 
zero, since some women survive more than 17 years.

The rapid decrease in the estimated survival curve suggests that the mean and 
the median survival times will be short. To verify this, let us estimate the mean and the 
median survival times from the estimated survival distribution. Since some of the 
women survive longer than the 17 years of the study, this complicates the estimation of 
the population mean survival time. Instead of estimating the population mean, we shall 
therefore estimate the mean restricted to the time frame of 17 years, the length of the 
study. This restricted value will thus underestimate the true unrestricted mean. If no 
patient survived longer than the time frame of the study, the following procedure pro-
vides an estimate of the unrestricted mean.

year after diagnosis

Figure 11.1 Estimated 
survival distribution of 
ovarian cancer patients.
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The sample mean, restricted to the 17-year time frame, is found by summing the 
number of years (or other unit of time) survived during each time interval and dividing 
this sum by the sample size. However, the process of determining the number of years 
survived in an interval is complicated by the deaths, losses, and withdrawals that 
occurred during the interval. Instead of directly attempting to calculate the years sur-
vived, we shall use the following method to deal with this complication.

We calculate the sample mean by forming a weighted average of the years provided 
by each interval. The weight used with each interval is the cumulative survival probabil-
ity associated with the interval. This approach deals with the complications mentioned 
above, since the probability takes the deaths, losses, and withdrawals into account. Since 
there are two cumulative survival probabilities associated with each interval — the 
probability at the beginning, Pi, and the probability at the end, Pi+1 — we use their 
average. Thus, the formula for the restricted sample mean is

x a
P Pk

r i
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where k is the number of intervals and ai is the width of the ith interval.

This formula has an interesting geometrical interpretation: It provides an approxima-
tion to the area under the estimated survival curve. For example, consider a curve with 
three intervals (Figure 11.2). We are using rectangles to estimate the area under the 
curve. As we can see, some of the area under the curve is not included in the rectangles. 
However, this area is approximately offset by the areas included in the rectangles that 
are not under the curve. The formula for the area of a rectangle is the height multiplied 
by the width. In this case, the width is one unit or, in general, ai units, and the height 
is taken to be the average of the points at the beginning and end of the interval, that is, 
(Pi + Pi+1)/2. Hence, another way of interpreting the mean is that it is the area under the 
survival curve. We approximate this area by calculating the area of the rectangles that 
can be superimposed on the survival curve.

When the intervals are all of the same width — for example, a — then the formula 
can be simplifi ed to

Figure 11.2 Survival 
curve with rectangles 
superimposed.
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Because the intervals are all of width one in this example, the sample mean is simply 
the sum of the entries in column 6 of Table 11.2 minus one half of the fi rst and last 
entries in the column. This is

 (1.000 + 0.469 + 0.338 +  .  .  .  + 0.131) − 0.5(1.000 + 0.131)

which equals 3.92 years. This restricted mean survival time appears to be larger than 
what the fi rst-year survival probability might suggest. As we saw in Chapter 3, the mean 
can be affected by a few large observations, and that is the case here. The sample mean 
refl ects the presence of a few long-term survivors. Let us now calculate the median 
length of survival.

The median survival time is estimated in the following manner. First, we read down 
the list of estimated cumulative survival probabilities, column 6 in Table 11.2, until we 
fi nd the interval for which Pi is greater than or equal to 0.5 and Pi+1 is less than 0.5. In 
Table 11.2, this is the fi rst interval, since P1 is greater than 0.5 and P2 is less than 0.5. 
Thus, we know that the estimated median survival time is between 0 and 1 year. Since 
47 percent of the patients survived the fi rst year, we suspect that the estimated median 
survival time is much closer to one year than to zero years. To fi nd a more precise value, 
we shall use linear interpolation.

In using linear interpolation, we are assuming that the deaths occurred at a constant 
rate throughout the interval. This is the same assumption we made when we connected 
the survival probabilities in Figure 11.1. In using linear interpolation, we know that to 
reach the median, we only require a portion of the interval, not the entire interval. The 
portion that we need is simply the ratio of the difference of Pi and 0.5 to the length of 
the interval. In symbols, this is

 (Pi − 0.5) / (Pi − Pi+1).

We multiply this ratio by the width of the interval and add that to the survival time at 
the beginning of the interval. Replacing these words by symbols, the formula is

Sample median x a
P

P P
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where xi is the survival time at beginning of the interval and ai is the width of the 
interval. In this example, the sample median survival time is

Sample median = + −
−( ) =0 1
1 0 5

1 0 469
0 94

.

.
. .

The sample median survival time of about one year is much shorter than the estimated 
restricted mean survival time. As we just mentioned, the mean survival time is affected 
by a small number of long-term survivors. This is why the median is more often used 
with survival data.

The median can also be obtained from the plot of the estimated survival curve shown 
in Figure 11.1. We move up the vertical axis until we reach the survival probability value 
of 0.5. We then draw a line parallel to the time axis and mark where it intersects the 
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survival curve. We next draw a line, parallel to the vertical axis, from the intersection 
point to the time line. The sample median survival time is the value where the line 
intersects the time axis. Figure 11.3 shows the estimated survival curve plot with these 
lines used to fi nd the sample median drawn in the plot as well. The accuracy of the 
estimate of the median is limited by the scales used in plotting the survival curve. In 
Figure 11.3, the precision of the estimate is likely not to be high because of the scales 
used. It appears that the sample estimate of the median is approximately one year.

Another statistic often used in survival analysis is the hazard rate, which is also 
known as the life-table mortality rate, force of mortality, and instantaneous failure rate. 
It is used to measure the proneness to failure during a very short time interval. It is 
analogous to an age-specifi c death rate or interval-specifi c failure rate. It is the propor-
tion of subjects dying or failing in an interval per unit of time. The hazard rate is usually 
estimated by the following formula:
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The denominator of this formula uses the number of survivors — again assuming that 
death is occurring at a constant rate throughout the interval — at the midpoint of the 
interval. When the interval is very short, it makes little difference whether the number 
of survivors at the beginning or at the midpoint of the interval is used in the denomina-
tor. The sample hazard rates are calculated and shown in Table 11.3 for the fi rst 10 years 
of follow-up. The estimate of the fi rst year hazard or mortality rate is quite high with 
723 deaths per 1000 patients. The hazard is concentrated in the fi rst fi ve years after 
diagnosis and stabilizes at a low level after fi ve years of survival. The variance of the 
sample hazard rate is estimated by

Figure 11.3 Using the 
estimated survival 
curve to fi nd the 
median.

Table 11.3 Estimates of hazard rates and their standard errors.

Year Hazard Rate Standard Error Year Hazard Rate Standard Error

0–1 0.723 0.0179 5–6 0.059 0.0132
1–2 0.326 0.0176 6–7 0.070 0.0161
2–3 0.185 0.0160 7–8 0.065 0.0174
3–4 0.119 0.0149 8–9 0.041 0.0156
4–5 0.104 0.0156 9–10 0.053 0.0201
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The estimated standard errors (the square root of the estimated variance) of the sample 
hazard rates are calculated and shown in Table 11.3. If we assume that the sample hazard 
rates are asymptotically normally distributed, these sample standard errors can be used 
to calculate confi dence intervals for the population hazard rates. For example, the 95 
percent confi dence interval for the fi rst year hazard or mortality rate ranges from

 0.723 − 1.96(0.0179) to 0.723 + 1.96(0.0179)

or from 0.688 to 0.758.

These life table calculations can be performed by the computer (see Program Note 
11.1 on the website).

11.3   The Product-Limit Method
When we analyze a smaller data set — for example, a sample size less than 100 — the 
life-table method may not work very well because the grouping of survival times 
becomes problematic. Instead we use a method that is based on the actual survival time 
for each subject rather than grouping the subjects into intervals. The product-limit 
method, also known as the Kaplan-Meier method (Kaplan and Meier 1958), is used to 
estimate the cumulative survival probability from a small data set, without relying on 
groupings of survival times. As we can see following, the basic principles and compu-
tational procedures involved in the product-limit method are similar to the life-table 
method.

We start with an example.

Example 11.2

Suppose that 14 alcohol-dependent patients went through an intensive detoxifi cation 
treatment for four years from 1990 to 1993 at a small clinic. There was a follow-up 
contact every month to check on their drinking status. The data shown in Table 11.4 

Table 11.4 Status of 14 alcohol-dependent patients discharged from a clinic.

Patient Number Date of Discharge Date of Termination Follow-up Status Gender

 1 9001 9312 2 Still sober (withdrawn) 1 Female
 2 9003 9009 1 Relapsed 1 Female
 3 9005 9209 1 Relapsed 2 Male
 4 9009 9111 2 Lost-to-follow-up 2 Male
 5 9011 9306 1 Relapsed 1 Female
 6 9102 9312 2 Still sober (withdrawn) 1 Female
 7 9104 9211 1 Relapsed 1 Female
 8 9108 9304 1 Relapsed 1 Female
 9 9110 9202 1 Relapsed 2 Male
10 9203 9308 2 Lost-to-follow-up 2 Male
11 9207 9311 1 Relapsed 2 Male
12 9212 9310 1 Relapsed 1 Female
13 9303 9312 2 Still sober (withdrawn) 2 Male
14 9304 9310 1 Relapsed 2 Male
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The fi rst step of analysis is to calculate the survival time, x, in months for all subjects, 
censored and uncensored, and arrange them in order from the smallest to the largest 
with the censoring status indicated. If an uncensored subject and a censored subject 
have survival times of the same length, the uncensored one precedes the corresponding 
censored observation. For the data shown in Table 11.4, the ordered list of alcohol-free 
times in months, with the censored observations marked by asterisks, is as follows:

 4, 6, 6, 9*, 10, 14*, 16, 17*, 19, 20, 28, 31, 34*, 47*.

The second step is to create a worksheet like that shown in Table 11.5. In Table 11.5, 
the column headings refer to death and survival. For this problem, death is equated with 
relapse and survival is remaining alcohol free. The fi rst three columns in the worksheet 
are created according to the following procedures.

1. List the uncensored alcohol-free times in order. These are 4, 6, 10, 16, 19, 20, 28, 
and 31. We shall refer to these times as x1, x2,  .  .  .  , x8, respectively.

2. Count the number of relapses at each xi. There is one relapse at each time unless 
there are ties. The numbers are 1, 2, 1, 1, 1, 1, 1, and 1.

3. Count the number of subjects who are at risk of relapse at xi. For example, when 
the survival time is 10 months, three people have already relapsed and one person 
was withdrawn. Thus, there are only 10 persons at risk of relapse at 10 months. 
The list of these numbers is 14, 13, 10, 8, 6, 5, 4, and 3.

The fourth and fi fth columns, estimates of the conditional probability of survival (1 
− qx) and the cumulative probability of survival (Px) are calculated next, followed by 
the calculation of estimated standard error of Px, shown in column 6. The estimator of 
the conditional probability of relapse is the number of relapses divided by the number 
at risk, that is, qx = dx/nx. The estimator of the conditional probability of survival is

were abstracted from the clinic patient records. The date of discharge and the date 
of termination are shown in year and month (9001 indicates 1990, January). The 
follow-up status is coded 2 if censored (withdrawn or lost-to-follow-up) and 1 if 
relapsed to drinking. Gender is coded 1 for females and 2 for males. The purpose of 
our study is to analyze the length of alcohol-free time among these 14 patients.

Table 11.5 Kaplan-Meier estimates of survival probabilities with standard errors.

   (4) (5)  (7)
(1) (2) (3) Conditional Cumulative (6) Approx.
Survival Number Number Probability Probability Standard Standard
Time of Deaths at Risk of Survival of Survival Error Error
xi dx nx (1 - qx) Px SE(Px) SE(Px)

 0 0 14 1.000 1.000 — —
 4 1 14 0.929 0.929 0.069 0.066
 6 2 13 0.846 0.786 0.110 0.101
10 1 10 0.900 0.707 0.124 0.121
16 1 8 0.875 0.619 0.136 0.135
19 1 6 0.833 0.516 0.148 0.146
20 1 5 0.800 0.412 0.150 0.141
28 1 4 0.750 0.309 0.144 0.128
31 1 3 0.667 0.206 0.127 0.106
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For example, 1 − q4 = (1 − 1/14) = 0.929 and 1 − q6 = (1 − 2/13) = 0.846. The estimator 
of the cumulative probability of survival is found from the estimators of the conditional 
probabilities of survival in the same way as in the life-table method — that is,
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The product symbol, Π, means that we multiply each term in the expression by one 
another for the indicated values of t. For example,

P q q qt

t

6
6

4 61 1 1 0 929 0 846 0 786= −( ) = −( ) −( ) = ( )( ) =
≤

∏ . . . .

We could have included 1 − q0 in the product, but since q0 is defi ned to be zero, its 
inclusion would not have changed the product.

As we have just seen, the censored observations have not been excluded from the 
analysis. They played a role in the determination of the number at risk at each time of 
relapse. If the censored observations were totally excluded from the analysis, the esti-
mate of the conditional survival probabilities for the uncensored observations would be 
different.

The variance of Px is estimated by
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The approximation shown in the preceding equation is much simpler to calculate, and 
it works reasonably well in most situations (Peto et al. 1977). Taking the square root of 
the variance, we obtain the estimated standard errors of the Px that are shown in column 
6. The approximate standard errors are shown in column 7. The approximate estimate 
of the standard error of P4 is 0.066, compared to the value of 0.069 obtained from the 
use of the fi rst expression for the sample variance.

Figure 11.4 graphically displays the estimated survival distribution shown in the fi fth 
column of Table 11.5. The plot includes a survival probability of 1 at time 0. The plot 
of the survival probabilities is referred to as a step function, since it looks like a stair 
step. It has this appearance because the probability of survival stays the same over a 
time period — this causes the horizontal lines — and then drops whenever there is 
another relapse — the vertical lines. However, long horizontal lines, showing no change 
in survival probability for a long period of time, should not be interpreted as a period 
with no risk, for these may occur because of a small number of subjects under observa-
tion during those time periods.

We can estimate the mean survival time from the survival distribution. Again, just as 
in the life-table method, if the largest survival time is a censored time, we are really esti-
mating a restricted mean. If the largest survival time is uncensored, then the survival 
probability will decrease to zero, and we will be estimating the unrestricted mean. As in 
the life table, the mean survival time is the area under the curve. We shall again use rect-
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angles to approximate this area. Because of the step nature of the survival curve here, the 
rectangles are already formed for us. Unlike the life-table method, the widths of the inter-
vals here are usually different. The following formula shows the area of each rectangle 
being calculated as the product of the height of the rectangle, the estimated cumulative 
survival probability associated with xi, by the width, xi+1 minus xi. In symbols, this is

x P x xr x i i

i

k

i
= −( )+

=

−

∑ 1

0

1

where k is the number of distinct time points when someone relapsed, x0 is defi ned to 
be zero, and P0 is defi ned to be one.

For these data, the estimate of the restricted mean alcohol-free time, restricted to a 
31-month window, is given by

 x–r = 1(4 − 0) + 0.929(6 − 4) +  .  .  .  + 0.309(31 − 28) = 18.4.

This is an underestimate of the true mean alcohol-free time because we are restricted 
to the study timeframe and there were still people free of alcohol at the end of the 
study.

From Table 11.5, we can see that the sample median survival time, the point at which 
the cumulative survival probability is 0.5, occurs between the 19th and 20th months and 
is closer to month 19. We shall interpolate to fi nd the sample median in the same way 
as in the life-table method. From our data, the sample median survival time is found as 
follows:

Sample median mont= + −( ) −
−

⎛
⎝⎜

⎞
⎠⎟

=19 20 19
0 516 0 5

0 516 0 412
19 2

. .

. .
. hhs.

We should not use interpolation to fi nd the median if there is a large gap in time between 
the two survival times in which we will be using the interpolation.

The computer can be used to calculate the entries in Table 11.5 as well as the sample 
mean, the median, and the graph in Figure 11.4 (see Program Note 11.2 on the 
website).

Because the product-limit method is based on the ranking of individual survival 
times, it is cumbersome to apply with a large data set. We would not consider using it 

Figure 11.4 Survival 
distribution estimated 
by the product-limit 
method.
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310  Analysis of Survival Data

with the ovarian cancer data from the California Tumor Registry that had over 2000 
observations. For a large data set, the life-table method simplifi es the calculation and 
gives results similar to the product-limit method.

So far we have focused on describing the survival experience of a single population. 
However, we are often interested in comparing the survival experiences of two or more 
groups of subjects who differ on some account — for example, patients who have 
received different therapies for cancer or patients who belong to different age or sex 
groups. The comparison of two survival distributions is the topic of the following 
section.

11.4   Comparison of Two Survival Distributions
When comparing the survival experience of two or more groups, the description of the 
differences in the estimated survival distributions and the plot of the survival curves 
are only the beginning of the analysis. In addition to these descriptive techniques, 
researchers require a statistical test to determine whether the observed differences are 
statistically signifi cant or due to chance variation.

In the analysis of survival data, we generally do not assume that the data follow any 
particular probability distribution. In the analysis, we also use the median survival time, 
rather than the mean, to summarize the survival experience. Because of these features, 
it seems as if a nonparametric test should be used when comparing survival distribu-
tions. If we know that the survival data follow a particular distribution, we should take 
advantage of that knowledge. There are parametric tests available that can be used when 
we know the probability distribution of the survival data (Lee 1992).

For small data sets with no censored observations, the Wilcoxon rank sum test (the 
Mann-Whitney test) can be used to test the null hypothesis of no difference in survival 
distributions for two independent samples. However, since survival time data usually 
contain censored observations, the Wilcoxon test cannot be directly applied. In this 
section, we show how the Cochran-Mantel-Haenszel (CMH) test statistic, described in 
Chapter 10, can be used in testing the hypothesis of no difference between two survival 
distributions (Mantel 1966). There are a number of other tests, extensions of the Wil-
coxon and other rank tests, that could be used as well, but the CMH test seems to 
perform as well, if not better, than these other tests.

11.4.1   The CMH Test

The key to the use of the CMH method with survival data is to realize that the data in 
each time interval can be formulated as a 2 by 2 table. The number of deaths and the 
number of survivors (the number exposed minus the number of deaths) for the two 
groups can be put in a 2 by 2 table for each time interval as shown next.

 Number of Deaths Number of Survivors Total

Group 1 d1i (n′1i − d1i) n′1i

Group 2 d2i (n′2i − d2i) n′2i

Total d.i (n’.i − d.i) n′.i
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It can be shown that the time intervals are uncorrelated with one another, which allows 
us to use the CMH statistic here.

Let us consider an example.

Example 11.3

The Hypertension Detection and Follow-up Program examined the effect of serum 
creatinine on eight-year mortality among hypertensive persons under care (Shulman 
et al. 1989). We are interested in testing whether or not the survival experience of 
persons with a serum creatinine concentration less than 1.7  mg/dL at the time of 
screening is more favorable than those with a serum creatinine concentration greater 
than or equal to 1.7  mg/dL. The data for testing this hypothesis are shown in Table 
11.6.

Table 11.6 Sample sizes and numbers of deaths by year and level of serum creatinine concentration 
in the HDFP study.

 Serum Creatinine (mg/dL)

 <1.7 ≥1.7 Total

Year under Care d1i n’1i d2i n’2i di n’i

0–1 93 10,469.5 21 297.0 114 10,766.5
1–2 115 10,374.5 16 276.0 131 10,650.5
2–3 125 10,254.0 13 260.0 138 10,514.0
3–4 181 10,121.5 14 246.5 195 10,368.0
4–5 160 9,930.5 17 232.0 177 10,162.5
5–6 212 9,763.0 10 215.0 222 9,978.0
6–7 191 9,551.0 14 205.0 205 9,756.0
7–8 203 9,147.5 8 186.5 211 9,334.0

Total 1,270  113  1,393

First, we use the data in Example 11.3 to estimate the cumulative survival probabilities 
for the two groups, applying the methods discussed earlier. The estimated cumulative 
survival probabilities and their standard errors are shown in Table 11.7.

The estimated cumulative survival probabilities are also shown graphically in Figure 
11.5. The survival distribution appears to be more favorable for the hypertensive persons 

Table 11.7 Cumulative survival probabilities and standard errors by year and level of serum creatinine 
concentration in the HDFP study.

 Creatinine Level <1.7 Creatinine Level ≥1.7

Year under Care Survival Probability Standard Error Survival Probability Standard Error

0–1 1.0000 0 1.0000 0
1–2 0.9911 0.0009 0.9295 0.0148
2–3 0.9801 0.0014 0.8758 0.0191
3–4 0.9682 0.0017 0.8322 0.0216
4–5 0.9509 0.0021 0.7851 0.0238
5–6 0.9355 0.0024 0.7279 0.0258
6–7 0.9151 0.0027 0.6942 0.0267
7–8 0.8969 0.0028 0.6470 0.0277
8 0.8770 0.0032 0.6194 0.0282
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312  Analysis of Survival Data

with a serum creatinine concentration less than 1.7  mg/dL than those with a serum 
creatinine concentration greater than or equal to 1.7  mg/dL. The two survival curves 
are consistently diverging, suggesting that the odds ratios in each time interval are 
similar to one another. Therefore, we do not have any problem using the CMH test to 
compare the two survival distributions.

To apply this test to the data in Table 11.6, we need to fi nd the expected number of 
deaths and the variance for the (1, 1) cell in each of the eight 2 by 2 tables. For example, 
the 2 by 2 table for the year 0–1 is shown next.

Creatinine Level Number of Deaths Number of Survivors Total

<1.7  mg/dL  93 10,376.5 10,469.5
≥1.7  mg/dL  21 276.0 297.0

Total 114 10,652.5 10,766.5

The expected number of deaths in the (1, 1) cell is the product of the total of the fi rst 
row and the fi rst column divided by the table total. Thus, the expected value is

 10469.5 (114) / 10766.5 = 110.86.

The estimated sample variance of the (1, 1) cell is the product of the four marginal 
totals divided by the square of the table total times the table total minus one. Thus, the 
sample variance is

10469 5 297 114 10652 5

10766 5 10766 5 1
3 03

2

. .

. .
. .

( )( )( )
−( )

=

Table 11.8 shows the expected number of deaths and the estimated variances for the 
eight (1, 1) cells based on the data in Table 11.6. The observed number of deaths in 
Group 1 (creatinine less than 1.7  mg/dL) is 1280 and the expected number of deaths is 
1361, suggesting that Group 1 has a favorable survival experience. We shall test the 
hypothesis of no difference in the survival distributions of the two groups at the 0.01 

Figure 11.5 Estimated 
survival distributions by 
level of serum 
creatinine 
concentration.
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signifi cance level. The test statistic, X 2
CMH, is calculated based on the data in Tables 11.6 

and 11.8 as follows:

X
O E

V
CMH
2

20 5 1289 1361 07 0 5

30 65
211 80= − −( )

= − −( )
=. . .

.
. .

Since the test statistic is greater than 6.63 (= c2
1,0.99), we reject the null hypothesis and 

conclude that persons with a serum creatinine concentration less than 1.7  mg/dL had a 
more favorable survival distribution than those with a higher creatinine value at the 
time of screening.

11.4.2   The Normal Distribution Approach

The individual survival probabilities of the two groups can be compared using the 
method discussed in Chapter 8. But this approach has the disadvantage that it focuses 
on a particular point in time and does not use all the information in the data set. For 
example, the two-year survival probability of the group with serum creatinine level less 
than 1.7 is 98 percent compared with 88 percent for the group with serum creatinine 
level greater than or equal to 1.7. Let us test whether these probabilities are signifi cantly 
different at the 0.01 level. The test statistic for this comparison can be calculated from 
the data in Table 11.7 as follows:

z
p p

s e p s e p
= −

( )[ ] + ( )[ ]
= −

+
1 2

1
2

2
2 2

0 9801 0 8758

0 0014 0 0191. . . .

. .

. . 22
5 45= . .

The p-value for the calculated z statistic is 0.0001, which is statistically signifi cant. If 
after two years the survival experience changed, this test would not provide any infor-
mation about that change. One could use multiple tests but doing that has the disadvan-
tage of not yielding a single overall test.

11.4.3   The Log-Rank Test

The CMH test for the comparison of survival curves is often called the log-rank test 
because of the similarity of these two test statistics. Peto and Peto’s log-rank statistic is 
based on a set of scores derived from the logarithm of the survival function (Lee 1992; 
Peto and Peto 1972). Because of its complexity in calculation, researchers often use 
an approximate log-rank chi-square statistic that is easier to compute (Matthews and 
Farewell 1985, Chapter 7; Peto et al. 1977). Just as in the CMH approach, the approxi-

Table 11.8 Expected values and variances of the (1, 1) cells.

Year under Care Expected Value Variance

0–1 110.86 3.03
1–2 127.61 3.27
2–3 134.59 3.28
3–4 190.36 4.44
4–5 172.96 3.88
5–6 217.22 4.58
6–7 200.69 4.13
7–8 206.78 4.04

Total 1,361.07 30.65
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mate log rank test is based on the individual 2 by 2 tables, but it looks at the number 
of deaths and expected number of deaths for each group. The approximate log-rank 
statistic is calculated by

X
O E

E

O E

E
LR
2 1 1

2

1

2 2
2

2

= −( )
+ −( )

where O1 is the sum of the observed numbers of deaths across the time points in the 
(1, 1) cell and O2 is the corresponding sum for the (2, 1) cell. E1 and E2 are the corre-
sponding sums of the expected number of deaths. The approximate log-rank test statistic 
looks like the goodness-of-fi t chi-square statistic. Applying the approximate log-rank 
test chi-square procedure to the preceding data, we get

X LR
2

2 21280 1361 07

1361 07

113 31 93

31 93
210 66= −( )

+ −( )
=.

.

.

.
. .

It gives practically an identical result to the CMH chi-square value just shown. One 
advantage of the approximate log-rank test is that it can be extended to more than two 
group comparisons. The exact calculation of the statistic is more involved than we wish 
to present in this text, but different software packages often report the exact value.

11.4.4   Use of the CMH Approach with Small Data Sets

The CMH test statistic can also be used with a smaller data set along with the product-
limit method. Let us consider an example.

Example 11.4

We reexamine the data used in Table 11.4 in comparing the survival distributions of 
male and female patients at the 0.05 signifi cance level. The male and female survival 
distributions are shown in Figure 11.6. The median survival time for males is about 
20 months, and it is 16 months for females.

Figure 11.6 Estimated survival distributions by gender for the data in Table 11.4.
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We wish to determine whether or not there is a signifi cant difference between these 
two distributions. The data and the calculation of the test statistic for making this 
comparison are shown in Table 11.9.

The fi rst column of the table shows the observed alcohol-free times (xi) with the 
censoring status and gender indicated. The second column is the total number of 
subjects under observation at time x. The third and fourth columns show, respec-
tively, the number of females (Group 1) and the number of males (Group 2) under 
observation at time x. The fi fth column shows the observed number of relapses at 
time x. The numbers of relapses at time x in Group 1 and in Group 2 are shown in 
columns 6 and 7, respectively.

The eighth column shows the expected number of relapses at time xi for females. 
It is calculated in the same manner as before. For example, at 6 months, two relapses 
are recorded. The proportion of females under observation at 6 months is 7/13. 
Therefore, the expected number of relapses for females is 2*(7/13), or 1.08. The 
variances of the observed numbers of relapses for females at time xi are shown in 
column 9. These calculations are performed only for the uncensored survival times. 
The values are next summed and the CMH chi-square statistic is calculated as 
follows:

X
O E

V
CMH
2

2 20 5 5 6 19 0 5

1 67
0 29= − −( )

= − −( )
=. . .

.
. .

Since the test statistic is smaller than 3.84 (= c2
1,0.95), we fail to reject the null 

hypothesis.

The approximate log-rank chi-square statistic gives

Table 11.9 Comparison of alcohol-free time distributions for females and males.

Survival  Number of Subjects Observed No. of Relapses

Time  Total Female Male Total Female Male Expected
(1)  (2) (3) (4) (5) (6) (7) Relapses Variance
xi  n’i n’1i n’2i di d1i d2i (8) (9)

4 M 14 7 7 1 0 1 0.50 0.25
6 MF 13 7 6 2 1 1 1.08 0.46
9* M 11 6 5 0 0 0 0 0
10 F 10 6 4 1 1 0 0.60 0.24
14* M 9 5 4 0 0 0 0 0
16 M 8 5 3 1 0 1 0.63 0.23
17* M 7 5 2 0 0 0 0 0
19 F 6 5 1 1 1 0 0.83 0.14
20 F 5 4 1 1 1 0 0.80 0.16
28 M 4 3 1 1 0 1 0.75 0.19
31 F 3 3 0 1 1 0 1.00 0.00
34* F 2 2 0 0 0 0 0 0
47* F 1 1 0 0 0 0 0 0

Total     9 5 4 6.19 1.67

*Censored observations
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In Chapter 10, we indicated that the CMH test statistic should be used only when the 
odds ratios are similar across the subtables. The same idea applies here, and the plot of 
the two survival functions gives a rough way of assessing the validity of this assump-
tion. If the assumption is true, the plot of the two survival functions should be roughly 
parallel. If the lines representing the two survival functions cross one another, this defi -
nitely means that the assumption does not hold and the CMH test statistic should not 
be used. The reason for this is that one group has a better survival experience during 
part of the study period, and the other group has a better experience during another part 
of the period. Thus, it is diffi cult to say that one group has a better overall experience. 
The log-rank test also has the same requirement.

Comparison of two consistently different survival curves can be done by the com-
puter (see Program Note 11.3 on the website). Most statistics packages provide the 
log-rank chi-square and options for creating graphs of the survival functions.

Conclusion
In this chapter, we presented two methods for analyzing survival data: the life-table and 
product-limit methods. The life-table method is generally used for large data sets and 
the product-limit method for smaller data sets. In addition, we demonstrated the calcula-
tion of the sample median and restricted mean survival times. We also discussed why 
the median is preferred to the mean as a single summary statistic for use with survival 
data. We highly recommended the plotting of the survival distribution for a more com-
plete description of survival data. Finally, we showed the use of the Cochran-Mantel-
Haenszel test for comparing the equality of two survival distributions.

EXERCISES

11.1 In an effort to understand employment experience of nurses, personnel records 
of two large hospitals were reviewed (Benedict, Glasser, and Lee 1989). A total 
of 3221 nurses were hired during a 10-year period from 1970 to 1979 and 
employment records were reviewed 18 months beyond the end of 1979. In this 
cohort, only 780 nurses worked more than 33 months. The length of employ-
ment was presented by 3-month intervals as follows:

X LR
2

2 25 6 19

6 19

4 2 81

2 81
0 73= −( )

+ −( )
=.

.

.

.
. .

Computer programs provide the exact log-rank chi-square value of 0.84. Although 
the CMH chi-square value is smaller than the log-rank chi-square values (due mainly 
to the correction for continuity), we draw the same conclusion. Note that the CMH 
chi-square without the correction for continuity is 0.85.
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a. Prepare a worksheet for a life-table analysis and estimate the cumulative 
survival probabilities, the restricted mean, and the median length of employ-
ment. Also estimate the probability of termination for each of the 
intervals.

b. Estimate the standard errors of (1) the estimated cumulative survival proba-
bilities and (2) the probability of termination for each interval.

c. Calculate 95% confi dence intervals for (1) the 24-month cumulative survival 
probability and (2) the probability of termination during the fi rst three 
months of employment.

d. What additional data, if any, do you need and what further analyses would 
you perform to assess the nursing employment situation?

11.2 The Hypertension Detection and Follow-up Program collected mortality data 
for eight years (Shulman et al. 1989). The following data show the survival 
experience of two subgroups formed by the level of serum creatinine 
concentration:

Month after Number Number Number at Beginning
Employment Terminated Censored of Interval

 0–3 582  0 3,221
 3–6 369  0
 6–9 247  0
 9–12 212  0
12–15 182  0
15–18 144  0
18–21 129  75
21–24  99  74
24–27  85  59
27–30  51  53
30–33  45  35
33+  0 780

 Serum Creatinine Concentration (mg/dL)

Year 2.00–2.49 ≥2.5

Care Alive Died Censored Alive Died Censored

0–1 78 3 0 72 8 0
1–2 75 4 0 64 8 0
2–3 71 6 0 56 3 0
3–4 65 3 0 53 3 0
4–5 62 5 0 50 8 0
5–6 57 4 0 42 3 0
6–7 53 2 0 39 5 0
7–8 51 3 3 34 1 1
8+ 45 0 45 32 0 32

a. Analyze the survival pattern of each group using the life-table method: 
Estimate the cumulative survival probabilities and their standard errors, and 
compare the survival curves of these two groups graphically.

b. If it is appropriate, determine whether or not the two survival distributions 
are equal at the 0.01 signifi cance level.

c. Comment on what factors may have confounded the preceding comparison 
and what further analyses you think are necessary before you can draw more 
defensible conclusions.
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318  Analysis of Survival Data

11.3 The SHEP (Systolic Hypertension in the Elderly Program) Cooperative Research 
Group (1991) assessed the ability of antihypertensive drug treatment to reduce 
the risk of stroke (nonfatal and fatal) in a randomized, double-blind, placebo-
controlled experiment. A total of 4736 persons with systolic hypertension (sys-
tolic blood pressure 160  mmHg and above and diastolic blood pressure less than 
90  mmHg) were screened from 447,921 elderly persons aged 60 years and 
above. During the study period, 213 deaths occurred in the treatment group and 
242 deaths in the placebo group. The average follow-up period was 4.5 years. 
Total stroke was the primary end point and the following data were reported:

 Treatment Group Placebo Group

Year Number Started Strokes Lost Number Started Strokes Lost

0–1 2,365 28 0 2,371 34 0
1–2 2,316 22 0 2,308 42 0
2–3 2,264 21 0 2,229 22 2
3–4 2,153 18 0 2,193 34 2
4–5 1,438 13 5 1,393 24 1
5–6*   613  1 0   584  3 0

*The last stroke occurred during the 67th month of follow-up.

a. To analyze the above data by the life-table method, how would you set up 
the worksheet? It is obvious that there were censored observations other than 
the lost-to-follow-up, such as deaths and withdrawn alive. This can be seen 
since the difference in the number of persons starting one interval and the 
number starting the following interval decreased by more than the number 
of strokes in the interval. Would you include or exclude the data in the last 
reported interval?

b. If it is appropriate, test the hypothesis of the equality of the two survival 
distributions at the 0.05 signifi cance level.

11.4 A group of 31 patients diagnosed with lymphoma and presenting with clinical 
symptoms (“B” symptoms) was compared with another group of 33 lymphoma 
patients diagnosed without symptoms (“A” symptoms) (Mattews and Farewell 
1985, page 89). The recorded survival times (in months) for the 64 patients are 
as follows:

A symptoms:  3.2*  4.4*  6.2  9.0  9.9 14.4 15.8 18.5 27.6* 28.5 30.1*
 31.5* 32.2* 41.0 41.8* 44.5* 47.8* 50.6* 54.3* 55.0 60.0* 60.4*
 63.6* 63.7* 63.8* 66.1* 68.0* 68.7* 68.8* 70.9* 71.5* 75.3* 75.7*

B symptoms:  2.5  4.1  4.6  6.4  6.7  7.4  7.6  7.7  7.8  8.8 13.3
 13.4 18.3 19.7 21.9 24.7 27.5 29.7 30.1* 32.9 33.5 35.4*
 37.7* 40.9* 42.6* 45.4* 48.5 48.9* 60.4* 64.4* 66.4*

Asterisks indicate censored observations.

a. Estimate the survival probabilities, plot the survival curves, and determine 
whether the use of the CMH or log-rank test is appropriate in comparing the 
two survival curves.

b. Carry out the test at the 0.01 signifi cance level and interpret the results. How 
would you interpret the prolonged horizontal survival curve at the end of 
survival curves in both groups?
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11.5 The following data were abstracted from the records of the neonatal intensive 
care unit (NICU) in a hospital during the month of February 1993 (day and 
24-hour clock time are used to describe the timing of events — e.g., 0102 indi-
cates the fi rst day of February, 2/AM):

No. Sex Born Last Observed Status

 1 Boy 0102 2210 Discharged
 2 Girl 0306 1722 Died
 3 Boy 0309 1517 Died
 4 Boy 0523 2609 Discharged
 5 Boy 0918 1001 Died
 6 Girl 1004 2411 Died
 7 Boy 1107 2512 Discharged
 8 Girl 1110 1815 Discharged
 9 Boy 1206 1408 Died
10 Girl 1307 2320 Died
11 Girl 1412 2823 Still in NICU
12 Boy 1500 1510 Died
13 Boy 1607 2220 Died
14 Girl 1819 2823 Still in NICU
15 Boy 1903 2009 Died
16 Boy 2009 2711 Discharged
17 Boy 2110 2823 Still in NICU
18 Girl 2208 2320 Died
19 Girl 2321 2823 Still in NICU
20 Girl 2323 2810 Discharged
21 Boy 2402 2823 Still in NICU
22 Girl 2509 2823 Still in NICU
23 Boy 2620 2823 Still in NICU
24 Girl 2701 2822 Died

a. Estimate the neonatal survival function for these NICU infants, estimate the 
median survival time, and form the 90 percent confi dence interval for the 
50-hour survival probability.

b. Plot the estimated neonatal survival functions separately for boys and girls 
and test the equality of the two survival distributions at the 0.10 signifi cance 
level.

11.6 Quality of care for colorectal cancer was evaluated by comparing the survival 
experience of patients in two types of health plans (fee-for-service and health 
maintenance organization) offered by the same health care provider (Vemon et 
al. 1992). The following data were generated from the reported survival 
curves:

Practice Survival Times in Months

Fee-for-  2  5 10 12* 14 14 16 18 23 26* 27 31
Service 34 37* 39 42* 46 47* 50 53*

HMO  4 10* 12 15 19 25 30* 35 38 43* 49 54*

Asterisks indicate censored observations.

a. Estimate the survival distributions by the product-limit method and graphi-
cally compare the survival curves.

b. Compare the equality of the survival distributions of the two medical ser-
vices at the 0.01 signifi cance level.
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11.7 From April 1, 1999, family physicians are required to refer all patients who have 
suspected breast cancer in the United Kingdom to a hospital to be seen within 
14 days of referral. Data from a cancer registry were used to examine whether 
the survival distributions of different length of delay groups (from referral to 
treatment) are different (Sainsbury, Johnston, and Haward 1999). Patients diag-
nosed with breast cancer during the 1986–1990 period were used for this analy-
sis. Of the 9488 patients registered, 5708 had information on dates of referral 
and treatment. It was stated that “survival curves were estimated by the Kaplan-
Meier method.” Based on a survival analysis of the following data, the authors 
concluded that “delays of more than 90 days are unlikely to have an impact on 
survival and that, if delays can be kept to within this time, efforts to shorten 
delays further should not have priority.”

 Number of Survivors at the Beginning of the Interval

 Delay Groups

Years of Survival <30 Days 30–59 Days 60–89 Days ≥90 Days

0–1 3,534 1,578 345 251
1–2 3,113 1,490 328 235
2–3 2,743 1,370 301 217
3–4 2,470 1,274 275 198
4–5 2,235 1,182 254 186
5–6 2,062 1,101 239 176
6–7 1,897 1,050 225 168
7–8 1,769    982 212 157
8+ 1,647    913 199 154

Assume that there were no censored observations.

a. More than one-half of the data were in the less than 30 days delay group. 
What are merits and demerits of splitting this group to <15 days and 15–29 
days groups?

b. Do you think that the Kaplan-Meier method was appropriate for this 
analysis?

c. Estimate the survival distributions for <30 days delay group and the ≥90 
days delay group, and test whether two survival distributions are signifi -
cantly different at the 0.05 level.

d. Do you think the author’s conclusions are supported by your analysis? Why 
or why not? What are possible confounders for the difference in survival 
distributions?
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