# Browsing of Biological Databases and Identification of Bioinformatics Tools

#### **Databases**

Primary (archival)

- GenBank /EMBL /DDBJ
- Uniprot
- PDB
- Medline (Pubmed)

Others are: Refseq, Taxon, OMIM etc

#### There are three major public DNA databases



#### >100,000 species are represented in GenBank

all species 128,941

viruses 6,137

bacteria 31,262

archaea 2,100

eukaryota 87,147

# How can I retrieve Information Using PubMed at NCBI

# PubMed

#### PubMed is...

- National Library of Medicine's search service
- links to participating online journals
- PubMed tutorial (via "Education" on side bar)



PubMed

•

Journal List Advanced

Search



#### **PMC**

PubMed Central® (PMC) is a free full-text archive of biomedical and life sciences journal literature at the U.S. National Institutes of Health's National Library of Medicine (NIH/NLM).

#### PubReade

A whole new way to read scientific literature at PubMed Central

#### Get Started

PMC Overview

Users' Guide

Journal List

PMC FAQs

PMC Copyright Notice

#### **Participate**

Information for Publishers

How to Participate in PMC

Participation Agreements

File Submission Specifications

File Validation Tools

#### Keep Up to Date

New in PMC | RSS

PMC Announce Mail List

Utilities Announce Mail List

Tagging Guidelines Mail List

#### Other Resources

PMC International

Text Mining Collections

Developer Resources

PMC Citation Search

PMC Accessibility

n.gov/account/?back\_url=https%3A%2F%2Fwww.ncbi.nlm....

#### 5 MILLION Articles

are archived in PMC.

Content provided in part by:

2161 Full Participation

Journals

333 NIH Portfolio Journals

Selective Deposit Journals

4736

#### Public Access

Funders and PMC

How Papers Get Into PMC

NIH Manuscript Submission System

My Bibliography

PMCID/PMID/NIHMSID Converter



#### **OMIM**

OMIM is...

- Online Mendelian Inheritance in Man
- catalog of human genes and genetic disorders
- Information about particular diseases

#### Books

Books is...

searchable resource of on-line books

# Taxanomy

TaxBrowser is...

- browser for the major divisions of living organisms (archaea, bacteria, eukaryota, viruses)
- taxonomy information such as nucleotides and Proteins

#### Structure

Structure site includes...

- Molecular Modelling Database (MMDB)
- biopolymer structures obtained from the Protein Data Bank (PDB)
- 3D-structure viewer

#### SEQUENCE RETRIEVAL

Sequence is the nucleotides in a gene or the amino acids in a protein in their right order.

How to locate sequences:

Go to databases (I. e NCBI, iProClass, UNIPROT, etc).

Search for protein(s) or nucleotides sequence(s).

Retrieve sequences in FASTA format.

#### Nucleotide Sequence Retrieval

- 1 Go to the link for NCBI: <a href="http://www.ncbi.nlm.nih.gov/">http://www.ncbi.nlm.nih.gov/</a>
- 2 In the search window, scroll and select nucleotide
- 3 Lower search window type the name of your gene or protein
- 4 Click search button

#### Output

- 1: Look for your query gene or protein with complete mRNA cds
- 2: Below the query gene found; look for FASTA. Click the FASTA to retrieve your nucleotide sequences in FASTA format.
- 3: Copy and save your sequence as a text file using notepad to the relevant folder.

## Amino acid Sequence Retrieval

- 1 Go to the link for UNIPROT <a href="http://www.uniprot.org/">http://www.uniprot.org/</a>
- 2 In the query window, type your gene name
- 3 Click the search button
- 4 Wait for your result to appear. Then click the gene id number.
- This takes you to the query gene/protein information page

BLAST is...

- Basic Local Alignment Search Tool
- NCBI's sequence similarity search tool
- supports analysis of DNA and protein databases

BLAST (Basic Alignment Search Tool allows rapid sequence comparison of a query sequence against a database. The BLAST algorithm is fast, accurate and Web-accessible.

BLAST searching is fundamental to understanding the relatedness of any favorite query sequence to other known proteins or DNA sequences.

#### Applications include

- discovering new genes or proteins
- discovering variants of genes or proteins
- exploring protein structure and function

NCBI --> Resources --> Sequence Analysis --> BLAST

- √ Select the BLAST program
- ✓ Enter query sequence in FASTA format

- ✓ Choose optional parameter i. e
  Highly similar srquences
- ✓ Click Blast

- The score of a pairwise alignment includes positive values for exact matches, and other scores for mismatches and gaps.
- Score reflects degree of similarity

### Protein Sequence Analysis

- Click or Paste the web link to your browser to enter the ProtParam tool.
- The computed parameters include the molecular weight, theoretical pl, amino acid composition, atomic composition, extinction coefficient, estimated half-life, instability index, aliphatic index and grand average of hydropathicity (GRAVY) for protein sequences
- http://web.expasy.org/protparam/
- your sequence in the Protein query box in FASTA format or SwissProt accession number
- Click compute parameters.

#### Translation of Protein to nucleotide

Emboss Transeq ---> Sequence
 Translation

Launch back transeq (Protein sequence back translation)

**Submit** 

# Translation of nucleotides to proteins

Emboss Transeq → Enter or paste DNA sequence

**Submit** 

Tools > Sequence Translation > EMBOSS Transeq

#### **EMBOSS Transeq**

EMBOSS Transeq translates nucleic acid sequences to their corresponding peptide sequences. It can translate to the three forward and three reverse frames, and output multiple frame translations at once.



## Multiple sequence alignment

- A multiple sequence alignment (MSA) is a <u>sequence alignment</u> of three or more <u>biological sequences</u>, generally <u>protein</u>, <u>DNA</u>, or <u>RNA</u>.
- In many cases, the input set of query sequences are assumed to have an <u>evolutionary</u> relationship by which they share a lineage and are descended from a common ancestor.
- From the resulting MSA, sequence <u>homology</u> can be inferred and <u>phylogenetic analysis</u> can be conducted to assess the sequences' shared evolutionary origins.
- Multiple sequence alignment is often used to assess sequence <u>conservation</u> of <u>protein domains</u>, <u>tertiary</u> and <u>secondary</u> structures, and even individual amino acids or nucleotides

## MSA- Clustal Omega

- √ Go to :
   <a href="https://www.ebi.ac.uk/Tools/msa/clustalo/">https://www.ebi.ac.uk/Tools/msa/clustalo/</a>
- ✓ Input DNA Sequences
- ✓ Submit

# Phylogenetic Analysis I

- This is a known as molecular phylogenetics, which is the analysis of hereditary molecular differences, mainly in DNA sequences, to gain information on an organism's evolutionary relationships
- It finds evolutionary ties between organisms
- It provides relationships between an ancestral sequence and its descendants
- The result of a molecular <u>phylogenetic</u> analysis is expressed or can be drawn in a hierarchical diagram called a cladogram or phylogram (<u>phylogenetic tree</u>).
- Molecular phylogenetics is one aspect of molecular <u>systematics</u>, a broader term that also includes the use of molecular data in <u>taxonomy</u> and <u>biogeography</u>.

#### TreeTop - Phylogenetic Tree Prediction

- Go the TreeTop web link at <u>http://www.genebee.msu.su/services/phtr</u> <u>ee reduced.html</u>
- In the alignment window, copy and paste your ClustalW save MSA.
- It is preferable to activate Bootstrap.
- Include your email to receive result or you can wait for the analysis to be completed.
- Click submit Query button

# Phylogenetic Tree Prediction using Clustal Omega

- √ Go to :
   https://www.ebi.ac.uk/Tools/msa/clustalo/
- ✓ Input DNA Sequences
- ✓ Submit
- ✓ Click on Phylogenetic tree