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21.1 INTRODUCTION

In biology, the term ’ome generally refers to the entirety or

totality of a collection of specific things. For example, a

biome is a collection of living organisms, and a genome

refers to the collection of genes within a single organism.

’Omics, then, are fields of study that deal with these collec-

tions and involve the characterization and consideration of

multiple molecules simultaneously. When botanist Hans

Winkler proposed the term “genome” to describe a collec-

tion of chromosomes in the 1920s, he probably had no idea

how widely the ’ome suffix would come to be used. We

commonly study genomes of individual organisms or the

metagenomes of communities in order to: (1) understand

functional potential; (2) discern phylogenetic relationships;

and (3) evaluate heredity (e.g., horizontal gene transfer) at

the DNA level. The ’omics concept extends well beyond

DNA, however, and can include RNA transcripts, proteins

and metabolites, and these are often referred to as the

’omics cascade (Figure 21.1). In this cascade:

l The genome (or metagenome) contains information

about what can happen (i.e., functional potential);

l The transcriptome (or metatranscriptome) contains

information about what appears to be happening (i.e.,

which genes are being expressed);
l The proteome (or metaproteome) contains information

about the molecules that make things happen; and
l The metabolome contains information about what has

happened recently or is currently happening.

Although the ’omics cascade captures many of the major

’omics disciplines under study today, a variety of other

’omics have emerged in recent years. Some are subdisci-

plines of the major ’omics fields mentioned above (e.g., gly-

comics, lipidomics, interactomics), while others remain

emerging concepts, and have yet to be embraced as stand-

alone disciplines in mainstream science.

In addition, the field of bioinformatics has developed to

provide the statistical and computational approaches neces-

sary for evaluating the increasingly large and complex

datasets that ’omics technologies are producing. In fact,

with the rapid expansion in technologies such as DNA

sequencing, the analysis and interpretation of ’omics data-

sets are often the most challenging parts of ’omics -based

experiments. In this chapter, we will discuss the primary

483
I.L. Pepper, C.P. Gerba, T.J. Gentry: Environmental Microbiology, Third edition. DOI: http://dx.doi.org/10.1016/B978-0-12-394626-3.00021-1

© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-394626-3.00021-1


’omics-based methods currently being used to characterize

environmental microorganisms, and also approaches for

analyzing and interpreting the “bioinformation” that these

studies generate.

21.2 GENOMICS AND COMPARATIVE
GENOMICS

The term genome describes the total collection of an organ-

ism’s hereditary information. Genomes are often encoded as

DNA and stored in chromosomes, mitochondria, plasmids

and/or chloroplasts. However, for many viruses, the genome

is composed of RNA only. Advances in DNA sequencing

technologies have resulted in the ability to produce vast

amounts of sequence information. Where sequencing was

once limited to specific gene targets or relatively short

DNA fragments, it is now routinely applied to whole gen-

omes. The first whole genome sequence of a free-living

organism, Haemophilus influenzae, was completed in 1995

(Fleischmann et al., 1995). According to the Genomes

Online Database (GOLD, see Table 13.2) as of July 2013,

nearly 7000 genomes had been sequenced (in complete or

draft stage), and thousands more were listed as ongoing pro-

jects. The availability of such large quantities of genome

sequence information has spawned a field of study known

as comparative genomics. Comparative genomics studies

seek to identify similarities and differences in the genes and

gene content of various organisms, and a variety of data

management systems and analysis platforms have evolved

aid in these efforts. The Joint Genome Institute (JGI) pro-

vides such a platform in their Integrated Microbial

Genomes (IMG) system (Markowitz et al., 2010).

By examining the similarities and differences among

genomes, comparative genomics attempts to draw infer-

ences with respect to the function of particular genes, iden-

tify regulatory regions and find evidence of evolution and/

or genetic exchange, by providing insights into the mobility

of chromosomal sections and lateral gene transfer. For

example, bacterial and archaeal thermophiles often share

the same habitats, and there is abundant evidence from

genomic analysis that lateral gene transfer is common in

the group. Specifically, the Thermotoga maritima genome

has been estimated to have approximately 20% of genes

that have primary homology to hyperthermophilic

Archaea, principally Pyrococcus spp. (Nelson et al., 1999).

When comparative genomic approaches were used to study

the thermophilic carboxydotroph, Carboxydothermus

hydrogenoformans, a variety of interesting features, includ-

ing conserved genes involved in sporulation and a

Rhodosporillum rubrum-like carbon monoxide dehydroge-

nase operon, were discovered (Wu et al., 2005). In addi-

tion, it was revealed that approximately 30% of the open

reading frames in the genome have high similarity to genes

in methanogenic Archaea. This observed sequence similar-

ity has led researchers to hypothesize that extensive lateral

genetic exchange has occurred between C. hydrogenofor-

mans and methanogens (González and Robb, 2000). The

close association of methanogens and carboxydotrophic

bacteria in the environment suggests that at the very least

there is a high potential for exchange of metabolites

between the two groups. These examples illustrate the

power of comparative genomics in taking nucleic acid

sequences and inferring functionality of individual genes

as well as potential interactions and genetic exchanges

between members of a particular microbial community.

An emerging area of comparative genomics is single-

cell genomics (Laskin, 2012). One of the major benefits

of nucleic acid-based methods is the ability to circumvent

the need to culture microorganisms before they can be

characterized, thus enabling the characterization of diffi-

cult-(or impossible)-to-culture microorganisms. However,

when applied to environmental samples containing

diverse communities of microorganisms, these approaches

can usually only provide information for a handful of

genes (e.g., 16S rRNA), or at best partially assembled

genomes for the most dominant organisms in the samples.

However, new techniques such as microfluidics and
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FIGURE 21.1 Overview of ’omics-based approaches for

characterizing environmental microorganisms. Adapted

from Zhang et al. (2010).
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microencapsulation are allowing researchers to isolate

and grow individual microorganisms (Zengler et al.,

2005; Wessel et al., 2013). When combined with whole-

genome amplification methods, these approaches are now

enabling researchers to obtain sufficient DNA from one

initial microbial cell to determine its entire genome, and

thus get a better understanding of its potential environ-

mental function—without ever isolating it on traditional

laboratory media (Figure 21.2)! This is particularly pow-

erful when used in combination with other methods such

as FISH (Section 13.3.5) to target and select for specific

groups of microorganisms that may be less abundant and

thus would largely be missed with shotgun sequencing-

based metagenomics approaches (Podar et al., 2007).

21.3 METAGENOMICS

As discussed in Section 13.6.2, the term metagenomics

was first coined by Handelsman et al. (1998) in reference

to the collective gene content of a community of microor-

ganisms (e.g., those in a soil sample). The definition of

metagenomics has since been expanded by the scientific

community to generally include any technique that is based

upon analysis of DNA extracted from environmental sam-

ples. This broader definition of metagenomics would

include 16S rRNA sequencing and related phylogenetic

fingerprinting techniques; however, it should be noted that

some researchers do not consider these methods (e.g., 16S

rRNA sequencing) to be true “metagenomic” techniques.

Over the past two decades, metagenomics-based assays

have become the standard for characterizing microbial

communities, and have been used in countless studies to

determine the structure, function and metabolic potential of

microbial communities in a wide variety of environments

(Table 19.1). The largest application has been 16S rRNA

gene sequencing for determining bacterial diversity and

community composition, although a variety of other

marker genes have been used, and an increasing number of

studies are randomly sequencing environmental DNA.

Extraction of

microorganisms

Separation of
cells using
flow
cytometry or
microfluidics

Whole-genome
amplification of DNA
from individual cells

Assembly and analysis
of sequence data

Blueprint of
microorganism

FIGURE 21.2 Overview of a single-cell

genomics-based approach for characterizing the

genomes of environmental microorganisms.
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The ability of metagenomics-based methods to characterize

environmental microorganisms without having to first iso-

late and culture them has allowed the discovery of many

previously unknown microorganisms and elucidation of

their environmental functions, such as the major contribu-

tions of Archaea to ammonia oxidation in a variety of eco-

systems (Section 4.4.3).

Although earlier metagenomics studies began with clon-

ing environmental DNA into vectors prior to functional

analysis or DNA sequencing, most metagenomics studies

today go directly from DNA extraction to sequencing

(Figure 13.13). If specific genes are targeted (e.g., 16S

rRNA), they can be amplified prior to sequencing (see

Section 13.4). Alternatively, the extracted DNA can be

sequenced without amplification of any specific genes. This

approach is often described as shotgun sequencing. In this

process, community DNA is extracted and fractionated into

small pieces (if necessary) and sequenced directly via high-

throughput sequencing (e.g., 454, Illumina and similar plat-

forms). Following sequencing and processing for quality

control (see Section 21.7.1), the reads are either: (1) directly

compared to databases for taxonomic and/or functional

annotation; or (2) assembled together into longer stretches

of DNA which can provide better information since they

then represent larger portions of the genome(s) (see

Section 21.7.2). Commonly used databases include those

available from the National Center for Biotechnological

Information (NCBI) and the Metagenomics Analysis Server

(MG-RAST) (Section 21.7.2.3; Table 21.1). If higher-order

functional identification is required, genes can be categorized

using a database such as the Kyoto Encyclopedia of Genes

and Genomes (Kanehisa et al., 2004); such databases facil-

itate identification of specific functional and enzymatic

pathways. At the moment, the assembly of metagenomics

data from environmental samples is extremely challenging

due to the complexity of microbial communities in these

environments, and the lack of a good set of reference

sequences from a diverse microbial community to serve as

a scaffold for assembling the sequences (Thomas et al.,

2012). In general, assembly of metagenomics data is lim-

ited to only extremely dominant members of simple com-

munities such as those in acid mine drainage (Case Study

21.1 and Figure 21.3; Tyson et al., 2004) or contaminated

groundwater (Hemme et al., 2010). Another challenge for

assembly is the relatively short read-lengths (,500 bp) of

many currently used sequencing methods. This not only

makes assembly more difficult, but it also makes direct

annotation of the reads more difficult since they often con-

tain only partial gene sequences. However, the develop-

ment of newer sequencing technologies, such as that of

Pacific Biosciences, promise the ability to provide longer

reads (.3000 bp) that will encompass entire genes, and

possibly even operons, and will thus allow for better

taxonomic classification and/or functional prediction.

Additionally, the large sequence datasets produced can be

computationally challenging to analyze. However, a vari-

ety of analysis pipelines and software programs have been

developed, and are continually being updated, that facili-

tate and are standardizing the processing and analysis of

these types of datasets (see Section 21.7).

Case Study 21.1 Metagenomics-based Characterization of Dominant Microorganisms in an Acid Mine Drainage Biofilm

One of the first studies to reconstruct putative genomes of environ-

mental microorganisms solely from metagenomic sequence data

was the work by Tyson et al. (2004) on an acid mine drainage com-

munity in California, U.S.A. Although the site was extremely acidic

(pH 0.83), an extensive biofilm existed on the surface of water from

the mine. Using fluorescence in situ hybridization (FISH) and 16S

rRNA sequencing, the scientists determined that the biofilm com-

munity was relatively simple, and was dominated (� 75% of com-

munity) by a single group of related bacteria, Leptospirillum group

II. The scientists then cloned and sequenced the extracted DNA fol-

lowed by assembly of the reads. Due to the simplicity of the biofilm

community, the sequences were successfully assembled into near-

complete genomes for two groups of Bacteria and Archaea:

Leptospirillum group II and Ferroplasma type II (Figure 21.3), as well

as partial assembly of three other genomes. Both of the near-

complete genomes contained putative genes commonly found in

microorganisms living in similar, extreme sites including genes for

efflux of heavy metals and various other detoxification mechanisms.

A number of novel cytochrome genes, which were potentially

involved in iron oxidation, were also detected. Since the site was in

the deep subsurface, it received little-to-no inputs of carbon and

nitrogen from the surface, and therefore would require at least some

of the members of the microbial community to fix both carbon and

nitrogen. Genes for carbon fixation were found in the Leptospirillum

group II genome, but Ferroplasma type II appeared to require exter-

nal sources of carbon. Interestingly, neither Leptospirillum group II

nor Ferroplasma type II contained genes for nitrogen fixation, sug-

gesting that other members of the community most likely fulfilled

this vital role for the community. The metagenomic sequencing data

from this study provided some initial insights into the metabolism

of dominant microorganisms in the biofilm community. In addition,

the biofilm is an ideal model community since it is: (1) a relatively

simple community dominated by a few microbial populations; and

(2) contains a large amount of biomass per unit volume. This

enabled a variety of other 0omics methods including transcriptomics

and proteomics to be used to validate and expand insights into the

ecology of the acid mine drainage biofilm community.
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Despite the unprecedented insight that metagenomics is

allowing into the diversity, structure and genetic potential

of microbial communities, it should be recognized that the

function of genes, from metagenomics data, is inferred

bioinformatically rather than tested empirically. However,

this initial characterization and prediction of a microbial

community’s genomic capabilities can serve as the platform

for further characterization using other additional ’omics-

based assays such as transcriptomics and proteomics, which

can verify whether these putative genes are expressed and

produce the predicted proteins (Case Study 21.1).

21.4 TRANSCRIPTOMICS

Modern genomic techniques such as metagenomics yield

vast amounts of data; however, this data represents the DNA

potential of a biological system, not necessarily the

expressed phenotype. To unlock the expressed fraction of

genomics, one must turn to RNA or protein expression, tran-

scriptomics (a.k.a. metatranscriptomics) and proteomics,

respectively. Since RNA, specifically mRNA, represents the

product of DNA transcription, it is a logical target for

transcriptomics-based analyses. Many metatranscriptomics

analyses are less hypothesis driven and may be considered

more exploratory in nature. Conversely, some transcrip-

tomics studies focus investigation on expression of targeted

genes, and additionally rely on other ’omics to complete the

picture (see Case Study 21.2). A number of studies applying

transcriptomics to various environmental matrices are

available for more in-depth discussion beyond the scope of

this section: Carvalhais et al. (2012) (review of transcrip-

tomics and soil); de Menezes et al. (2012) (transcriptomics

and organic contaminant degradation); and Kyle et al.

(2010) (transcriptomics applied to E. coli survival on food).

Overall, transcriptomics analyses have been conducted

on a number of sample matrices. Much of the original

transcriptomics work was conducted with clinical fecal

samples (Gosalbes et al., 2011), which given similar

caveats as environmental samples, provided for an appli-

cable template for the analysis of soil, water and plant

rhizosphere matrices. Much like sample collection for

DNA, care must be taken when collecting mRNA; how-

ever, mRNA is notoriously labile. mRNA will typically

persist in an environmental sample for no more than a

few minutes following collection. Additionally, the

mRNA half-life may vary for different environments and

microorganisms, and by gene function, with house-

keeping genes yielding more stable mRNA products

(Selinger et al., 2003). For this reason, samples must be

preserved within minutes, if not seconds, of collection.

There are a number of collection protocols, including

commercial kits (easily standardized) and “homemade”

traditional approaches, which often yield larger quantities

and higher quality RNA, though standardization may be

more difficult if conducting latitudinal studies.

Often, sample collection involves immediate freezing

in liquid nitrogen in order to prevent enzymatic RNA

degradation. While this may be possible when working in

a laboratory or greenhouse environment, it may not be

Case Study 21.2 Combining ’Omics: Metatranscriptomics and Metabolomics

Combining ’omic analyses yields more useful data than a single

analysis in many cases. For example, the application of transcrip-

tomics- and metabolomics-based analyses can reveal the relation-

ships between genes and their final functional activity. At the

most basic level, one analysis may provide useful insight while

the other may not; a more complex analysis may reveal intricate

relationships between transcriptional control and metabolic func-

tion. A study by Ishii et al. (2007) aimed to marry the two analy-

ses in the study of common environmental (substrate abundance

and reduction) and genetic (missing enzymatic pathways) pres-

sures imposed on Escherichia coli K-12. Global responses were

measured using a combination of qRT-PCR (quantitative real-time

PCR) to measure targeted mRNA transcripts, and liquid chroma-

tography and time-of-flight mass spectrometry to measure meta-

bolome response. Additionally, DNA microarrays and 2D-

differential gel electrophoresis were used to measure relative gene

and protein expression, respectively. From these data, the scien-

tists generated an expression index, which took data, separately,

from each analysis type and scaled the responses to permit com-

parisons across all analyses. The analyses revealed gradual

increases in mRNA and protein levels using both targeted and

global analyses when placing E. coli under high growth rate con-

ditions. Interestingly, metabolites did not significantly increase.

Reducing substrate availability additionally demonstrated few

changes in metabolites compared to the control. Finally, the

authors disrupted the enzymatic network by disrupting individual

genes; but only subtle changes were noted in mRNA and protein

expression of central carbon enzymatic pathways. The study dem-

onstrated two approaches which allow E. coli to quickly react to

genetic and environmental changes. The results of the study sug-

gest that E. coli has built-in structural redundancy (in enzymatic

pathways), which absorbs sudden changes in available substrate

as well as loss of single gene function. Results also suggest that

E. coli maintained the same metabolic rate (as demonstrated by

metabolomics) while up-regulating enzyme expression (as dem-

onstrated by targeted and global transcriptomics). This study

demonstrates the stability that E. coli’s enzymatic pathways pro-

vide along with the ability to rapidly respond to environmental

pressures. Discovery of this information was only made possible

through use of the multiple ’omics approach, in which one assay

demonstrated changes in the system, while the other assay was

incapable of detecting responses.
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feasible for environmental work. These situations may

necessitate the use of RNA stabilizing buffers such as the

MO BIO LifeGuardt Soil Preservation Solution (MO

BIO Laboratories, Inc., Carlsbad, CA). These buffers

facilitate the collection of mRNA from environmental

samples with immediate preservation while in the green-

house or field. While this step preserves the total RNA in

a biological system, the extraction of RNA from intact

cells is still necessary prior to analysis. As with DNA

extraction procedures, most RNA extraction from com-

mercial kits involves bead-beating technology and the

capture of RNA in a stable buffer which can be frozen

and subsequently analyzed. However, copurifying soil

and fecal humic acids and contaminating organic mole-

cules and metals can affect the quality of the final RNA

products (see Chapter 8).

Once mRNA is safely collected and preserved, it

needs to be converted to cDNA (complementary DNA;

Section 13.4.5). However, mRNA is often present as a

small fraction of the total RNA (mostly rRNA and

tRNA). Therefore, mRNA is often enriched or selectively

isolated from total RNA. As with sample collection and

RNA extraction, there are a number of commercial

approaches available, including the use of exonuclease

treatment (targeting rRNA), and subtractive hybridization

using magnetic beads coupled with oligos specific for

rRNA and tRNA, which are subsequently removed from

the solution. However, in environmental and clinical sam-

ples, eukaryotic mRNA may be present at high levels; in

these cases, eukaryotic mRNA can be removed by target-

ing mRNA containing 30 poly-A tails (Bailly et al., 2007).

Following mRNA enrichment, cDNA is most often the

template of choice for most downstream applications. In

these cases, reverse transcriptase and either specific pri-

mers or random oligos are applied, as in most other meth-

ods requiring cDNA synthesis (see Section 13.4.5).

As with DNA metagenomics work, the choice of the

sequencing system depends on the length of the intended

sequence product and anticipated coverage needed for a

specific biological system. Currently, most metatranscrip-

tomics work is conducted using 454 or Illumina systems,

the former producing larger sequence products (� 500 bp),

while the latter provides for smaller sequences (� 150 bp),

but a larger number of products (,1 Gb vs. 600 Gb). Each

system satisfies different study objectives as longer reads

are used to map repetitive sequence regions, while some

studies require deeper coverage depth. As sequencing

methods continue to develop, other platforms will likely be

adopted for use in metatranscriptomics.

Following sequencing, bioinformatic analysis removes

poor quality and short read sequences. Sequence ends are

also trimmed and data analyzed for the presence of rRNA

sequences (which can still be present, despite mRNA

enrichment), which are promptly removed from the library.

Typically, sequences are compared to available databases

which assign gene function and identification. However,

most metatranscriptomic projects include comparisons of

gene relative frequency, and whether a gene is up- or

down-regulated. In this case, gene frequencies are normal-

ized to gene abundances from a control metagenome, pref-

erably from the same environmental matrix. Similarly,

control metatranscriptomes allow for comparison to treated

samples or to various time points, depending on the study

objectives. As with metagenomic work, assembly may also

be necessary, though the complexity of environmental sam-

ples may prohibit this. Various assemblers are available

and consist of programs commonly employed in metage-

nomic work such as Genovo (Laserson et al., 2011) and

Newbler (454 Life Sciences, Branford, CT, U.S.A.). A

transcriptomic specific assembler such as Velvet (Zerbino

and Birney, 2008) can also be used (see Section 21.7 for

additional details on bioinformatics).

21.5 PROTEOMICS

Although DNA- and RNA-based methods can provide tre-

mendous insights into the environmental roles of microor-

ganisms, proteins, not genes, are directly responsible for

the majority of microbial processes. Therefore, measure-

ment of these proteins (i.e., enzymes) can provide a more

direct measurement of microbial activity. The proteins

produced by a given microorganism under a given set of

conditions are collectively referred to as the proteome. In

contrast to the genome, the proteome is much more vari-

able (like the transcriptome) with different proteins being

produced depending upon the stage of cell metabolism

and the environmental stimuli present.

Studying the proteome has the potential to provide

unique information about cell function, and the mechan-

isms behind cell responses to different stimuli.

Specifically, proteomics-based approaches allow identifi-

cation of proteins that are differentially expressed and,

thus, likely to be important in the microbial response to

environmental conditions. Proteomics-based studies of

environmental effects on microorganisms typically

involve the following:

l Exposure of microorganisms to a condition of interest
l Isolation of proteins from each population
l Separation of proteins
l Protein identification

The first two steps in proteomics-based studies are

relatively easy. There are a host of effective methods

available to isolate and purify the heterogeneous protein

mixtures made by microorganisms. However, separating

the proteins contained within these complex mixtures

represents one of the most challenging aspects of

proteomics. Two strategies to separate proteins are

commonly used: two-dimensional polyacrylamide gel
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electrophoresis (2D-PAGE) and liquid chromatography-

mass spectrometry (LC-MS). In 2D-PAGE, proteins are

first separated according to their isoelectric points (pI), the

pH at which the protein has no net charge. The second

dimension of 2D-PAGE separates proteins based on their

masses using a polyacrylamide gel. The resulting gel con-

tains many spots, each ideally containing a single protein

that can be identified using mass spectrometry-based

methods described below.

Alternatively, LC can be used for protein separation. In

this approach, proteins from a given population are pooled

and digested enzymatically into their constituent peptides.

These peptides are separated by LC (see Section 11.2.1.1)

which allows for the separation of molecules based on

charge or hydrophobicity. Proteins in the original popula-

tion of cells are identified on the basis of these peptides as

described below. LC-based separation of proteins can be

more readily automated, and may be more reproducible

than 2D-PAGE.

Once separated, proteins must be identified to gain

insight into mechanisms by which microorganisms interact

with the environment. Mass spectrometry is currently the

tool of choice for this task. Intact proteins are broken

down enzymatically (i.e., digested) into smaller peptides

and analyzed by mass spectrometry. Once accurate masses

of the peptides are obtained, the protein from which the

peptides originated can be identified. This approach to

protein identification is known as peptide mass finger-

printing (PMF). When PMF fails, other types of mass

spectrometry can be used to obtain direct amino acid

sequence data that can be useful for protein identification.

As differentially expressed proteins are identified, the

investigator gains insight into mechanisms by which the

microorganism responds to a particular environmental

condition (Westermeier and Naven, 2002).

Studies have demonstrated that the comprehensive,

high-throughput nature of proteomics-based approaches is

also well suited to elucidating biodegradative pathways.

For example, Kim et al. (2004) examined biodegra-

dation pathways of an aromatic-degrading pseudomonad

(Pseudomonas sp. K82) using 2D-PAGE followed by

mass spectrometric identification of proteins. Using this

approach, the investigators discovered three metabolic

pathways, each of which was induced to a different

degree by three different aromatic compounds.

As with recent research in metagenomics, applications

of proteomics to microbial ecosystems are emerging and

offer promise to link microbial species within complex

communities to function (Hettich et al., 2013). Termed

metaproteomics or community proteomics, these

approaches are designed to isolate as many proteins as

possible from a microbial community to learn more about

which microorganisms perform what tasks within a com-

munity (Figure 21.4). For example, Ram et al. (2005)

used metaproteomics to investigate and characterize an

acid mine drainage biofilm community similar to the one

described in Case Study 21.1 and Figure 21.3. As with

most proteomics-based approaches, this approach was

facilitated by genomic sequence data (Figure 21.5).

Specifically, the authors constructed a database of 12,148

predicted protein sequences from the similar biofilm com-

munity previously characterized using metagenomics

(Tyson et al., 2004). Using this database and an LC-mass

spectrometry approach to protein identification, the

authors identified 2033 individual proteins. Most were

produced by members of the genus Leptospirillum and

were involved with adaptation to this extremely acidic

(pH� 0.8), metal-laden environment. Many proteins

could not be assigned a function, yet were highly preva-

lent. One of these, which was previously identified by the

metagenomics approach as possibly playing a role in iron

oxidation, was confirmed to be a novel cytochrome

involved in iron oxidation and acid mine drainage forma-

tion. A subsequent study found that the proteome changed

during development of the biofilm (Mueller et al., 2011).

For example, the dominant organism, Leptospirillum

group II, produced more enzymes for metabolism of

1- and 2-carbon compounds and protein synthesis during

early biofilm development, and more stress-related and

iron oxidation proteins, likely related to acid mine drain-

age formation, as the biofilm developed and resources

likely became more limiting (Figure 21.6).

Despite the promise of metaproteomics, many impedi-

ments to its broader use exist. The need for a universal

method to exhaustively extract proteins from complex

communities, particularly those indigenous to soil, is of

paramount importance. In addition, the sensitivity of

detection of existing methods is limited, and approaches

are only capable of identifying proteins from microbial

populations that comprise.1% of a community.

Furthermore, additional metagenomics data are needed in

order to better predict the suite of proteins produced by

environmental microbial communities and accurately

interpret metaproteomics data (Figure 21.5). Nevertheless,

metaproteomics is a developing and promising area of

research, and will likely be increasingly used over the

next decade to study the activity and functions of environ-

mental microorganisms.

21.6 METABOLOMICS

Metabolomics consists of the study of low molecular

weight metabolites. Environmental metabolomics consists

of metabolites produced by interactions between microor-

ganisms, small eukaryotes, plants, animals, predators and

the presence of abiotic pressures and stimulants.
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Common metabolites (#1500 Da) consist of organic

acids (e.g., glycolytic intermediates), amino acids (e.g.,

protein intermediates) and various saccharides (e.g.,

monosaccharides and cleaved sugars).

As with genomics, transcriptomics and proteomics stud-

ies, the goal of metabolomics is often to elucidate the func-

tion of a microorganism or microbial community; however,

proteomics and metabolomics reveal information related to

the “final” genome product. Similarly, metabolomics char-

acterizes the interactions between microbial constituents

and their environment, or between microbial and other

higher-order ecological organisms such as plants and ani-

mals. Metabolomics has been used as an exploratory tool

(Dunn, 2008), to uncover the functional status of microbial

populations and single cells in their environment, revealing

community and ecological structure. Targeted metabolo-

mics enables the user to focus upon a specific metabolite,

for instance when a treatment may dictate the up- or down-

regulation of a product, while global metabolomics views

the biological system and its metabolites as a whole. A

number of studies or reviews describing metabolomics and

various environmental matrices are listed for further

information beyond the scope of this section: Zhang et al.

(2010) (review); Ito et al. (2013) (contaminated feedstock);

Liebeke et al. (2009) (benchtop single culture study); and

Bundy et al. (2009) (review).

Metabolites are broken down into two groups: the

endometabolome and exometabolome, which are metabo-

lites contained intracellularly and extracellularly, respec-

tively. Like transcriptomics, the study of intracellular

metabolites can be more difficult, as these molecules are

more fleeting and in a constant state of flux. Metabolome

complexity and study objectives involving intra- or extra-

cellular metabolites determine the type of extraction and

processing. Once metabolites are extracted, they are sub-

jected to identification with a number of instruments such

as gas and liquid chromatography-mass spectrometry,

Raman spectroscopy and nuclear magnetic resonance

(NMR). In many instances, depending on the complexity

of the biological system, the study will call for a combi-

nation of two or more of these instruments (Dunn, 2008;

Case Study 21.2).

Regardless of platform, a large amount of metabolic

data is typically generated. In many instances, the metabo-

lites under investigation are unknown and global in per-

spective; therefore, query databases are required to deduce

the function and purpose of the metabolite. Metabolites are

often identified as products or intermediates of environmental
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MS/MS

RPRP SCX

Filter union

Raw MS/MS spectra
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FIGURE 21.4 Experimental flowchart for sample preparation and measurement in a metaproteomics experiment. Sample collection and

processing steps must be optimized to match the nature of the material to be analyzed, in terms of biomass amount and complexity, matrix

composition, sample heterogeneity, etc. The resulting proteome sample is digested with trypsin and loaded onto a biphasic HPLC column for

concomitant 2D-separation and MS analysis via nanoelectrospray-based ionization of eluting peptides. Acquisition of parent peptide ion

(MS1) mass and fragmentation (MS/MS or MS2) information provides an experimental dataset containing hundreds of thousands of spectra

that can be computationally matched to the predicted proteome obtained from metagenomics information. From Hettich et al. (2013).
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populations under stress due to the overall health of a sys-

tem. Given the relatively novel nature of metabolomics,

particularly in environmental sciences, very few databases

exist to facilitate identification of environmental metabo-

lites. Common databases consist of the Human

Metabolome Database and Kyoto Encyclopedia of Genes

and Genomes; commonly used databases can be found at

http://www.metabolomicssociety.org/databases.

21.7 BIOINFORMATION

21.7.1 Bioinformatics and Analysis of Marker
Gene Data

21.7.1.1 16S rRNA and Other Marker Genes

As discussed in Chapter 13, marker genes, such as ribosomal

RNA (rRNA) genes or the internal transcribed spacer (ITS),

are frequently used to characterize the composition of bacte-

rial, archaeal and fungal communities. Marker genes are

useful because they allow for the relatively rapid characteri-

zation of the composition and diversity of microbial commu-

nities. The 16S rRNA gene is the most commonly used

marker gene for the characterization of Bacteria and Archaea,

while the ITS tends to be favored among microbiologists

for the characterization of fungi. That notwithstanding, the

18S rRNA and 28S rRNA genes are also commonly used

for the characterization of fungal communities, and are

frequently employed as an alternative to the ITS region

when detailed phylogenetic information is needed.

Recall, good marker genes share the characteristics of:

l Ubiquity—the marker should be present in most, if

not all, target species
l Genetic conservation—the sequence of the marker

should be conserved sufficiently that it can be targeted

with PCR primers
l Variability—in combination with genetic conservation,

the marker should also contain regions of sequence that

are variable and allow for differentiation between spe-

cies, among lineages and within populations.

Given these characteristics, marker genes are well

suited to serve as targets for sequence-based community

surveys. Using high-throughput sequencing platforms,

such as 454, Ion Torrent or Illumina, researchers are now

able to generate large quantities of sequence information

allowing them to describe the structure and diversity of

microbial communities of interest.

21.7.1.2 Platforms for Sequence Analysis

Due to the generation of large quantities of marker gene

sequences, there is a subsequent need to analyze and

DNA

Protein
fractions

Peptides 2D-LC
MS/MS

Strain-resolved
MS and

MS/MS spectra

Identified
peptides

Predicted
peptides

Identified
proteins

Sequence
and

assembly

Predicted
proteins

Metaproteomics

Metagenics

FIGURE 21.5 Integrated use of metagenomics and metaproteomics for characterizing microbial communities. DNA is extracted from

biological samples, fragmented and sequenced. The resulting sequence reads are then assembled and/or binned. After gene annotation,

the protein-sequence database is constructed and an in silico trypsin digest is performed on the predicted proteins, resulting in a peptide

database (top). From the same or similar biological samples, total community protein is extracted and then digested using trypsin.

Peptide separation by two-dimensional (2D) nano-liquid chromatography (LC) and tandem mass spectrometry (MS/MS) is performed

(see Figure 21.4). The spectra are matched to peptides in the database, and after filtering, a list of identified peptides is obtained. Based

on their unique occurrence in one protein in the whole database, certain peptides (unique peptides, colored red and blue) can be tracked

back to their corresponding proteins and thus permit reliable protein identification. Nonunique peptides (gray) cannot be used to uniquely

identify a protein, but these data are used in the calculation of protein coverage and abundance measures. The identified proteins are

placed back into the genomic context of the organisms they are derived from to allow for the biological mining of the data. Adapted

from VerBerkmoes et al. (2009).

492 PART | V Remediation of Organic and Metal Pollutants

http://www.metabolomicssociety.org/databases


A. General Metabolism

B. Cellular Processes

C. Environmental Sensing

Formic Acid

Sulfide

Fatty acid
biosynthesis

Formate

5,10-Methylene-THF

Transcription

Cell division
proteins:

SOS
response

DNA repair
mechanisms

Amino-acyl tRNA biosynthesis

Ribosomal
proteins

Proteasome

Transiation proteins
(e.g., Intiation and
elongation factors
and chaperones)

Ribosome
synthesis

Protein
synthesis

rRNA processing

Transcription
proteins

RpoD. Rho,
NusG, NusA,
NusE, GreA.DNA RNAs

Cell division &
SOS response

Molybdenum

Chemotaxis
proteins

Organic
solutes

Metals
CzcAB

ArsR
UspA PspA

PBP

P-II
ABC

transporter

Phosphate
Unknown stress

Phosphate Nitrogen
Toxin

secretion

HlyD

Streptogramin
lyase

Aminoglycoside
phosphotransferase

Methyl-accepting
chemotaxis

proteins (MCPs)

GS

NifA

Glutamine
biosynthesis

Nitrogen
utilization

genes

Phosphate
uptake
genes

PhoU

Rrf
LexA

HsIUV

RecA

FisY
FisZ
CbiA
PaiB
DnaA

Protein & ribosome

turnover

Glycine
H2O

1/2O2 + 2H+

Fhs

MTHFD

Cysteine + Acetate

CysM Acc

Cdh

FabD

Por

GltA

Pyruvate

TCA
cycle

O-acetyl-
L-serineH2S

+

Glycolysis/
gluconeogenesis

Reverse glycine
cleavage system

Iron oxidation &
forward electron flow

Fe3+

Cyt579
Cyt572

Fe2+

Pentose
phosphate pathway

Starch & trehalose metabolism
Amino & nucleotide sugar metabolism
Lipopolysaccharide metabolism

Amino acid metabolism
(e.g., ala, asp, glu, gln, arg, pro, phe,
tyr, trp, val, leu, ile)

Cyt553

cbb3

Acetyl-CoA

GcvT
GcvH

Flagellar
proteins

FIGURE 21.6 Physiological changes of the dominant bacteria, Leptospirillum group II, in an acid mine drainage biofilm as the biofilm matures.

Figure depicts significant changes in Leptospirillum group II proteins involved in (A) general metabolism, (B) cellular processes and (C) environmental

sensing. Proteins with yellow fill and pathway headings in yellow font (e.g., “Fhs” and “Reverse glycine cleavage system”) were significantly more

abundant in early and intermediate growth stages, and proteins with blue fill and pathway headings in blue font (e.g., “Cyt572” and “Pentose phosphate

pathway”) were significantly more abundant in late growth stage samples. Proteins labeled in white were detected by proteomics, but did not demonstrate

a biologically relevant abundance pattern. Proteins filled with a gray-checked pattern were not detected or are unknown. From Mueller et al. (2011).
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interpret them. A variety of analysis platforms have been

developed to accommodate this need, many of which are

open-source and/or freeware packages (Table 21.1).

Examples of these include standalone tool sets like

MOTHUR (Schloss et al., 2009) and QIIME (Caporaso

et al., 2010). Others are web-based portals like the

Ribosomal Database Project Pyrosequencing Pipeline (Cole

et al., 2009), VAMPS (http://vamps.mbl.edu/), the Genboree

Microbiome Toolset (Riehle et al., 2012) and PlutoF

(Abarenkov et al., 2010). Many of the web-based portals

feature the functions of MOTHUR and QIIME, some utilize

custom algorithms, and most feature additional platform-

specific analysis modules. One of the biggest advantages of

web-based platforms is that they link the features of popular

analysis packages with the power of larger, institutional ser-

vers. Their main disadvantage, however, is that by being

shared resources, they can be subject to high demand, and

one may sometimes have to wait longer than anticipated for

results to be processed.

Marker gene analysis platforms tend to revolve around

a core set of functions. These include: (1) the conversion

of raw sequence data (i.e., sff or fastq files) into FASTA

format; (2) quality filtering of sequences; (3) separation

of pooled sequences into their originating samples on the

basis of barcode tags; (4) data “reduction” to allow for

increased computational efficiency; and (5) detection of

potentially chimeric reads. Beyond these features, many

platforms also offer algorithms that: (1) attempt to

TABLE 21.1 Common Platforms for Sequence Analysis and Their Capabilities

Platform/Package Website Features Data Types Analyzed Reference

Marker gene analysis

QIIME http://qiime.org Quality filtering, separation of sequence by

barcode, OTUs, taxonomic identities,

diversity analyses, between community

comparisons

Marker gene sequences;

developed for 16S but can be

used with 18S or ITS sequence

Caporaso

et al., 2010

MOTHUR http://www.mothur.

org

Quality filtering, separation of sequence by

barcode, OTUs, taxonomic identities,

diversity analyses, between community

comparisons

Marker gene sequences;

developed for 16S but can be

used with ITS or other marker

gene sequences

Schloss et al.,

2009

Ribosomal Database

Project

http://rdp.cme.msu.

edu

Archive submission portal; quality filtering;

taxonomic identities; calculation of some

diversity indices

Largely developed to support

16S analysis; includes 28S

database for fungi

Cole et al.,

2009

VAMPS http://vamps.mbl.edu Wraps features of QIIME and MOTHUR;

includes links to data from large projects

like the Human Microbiome Project and the

Microbiome of the Built Environment

16S rRNA gene sequences Huse et al.,

2010

Genboree

Microbiome Toolset

http://genboree.org Web-based platform for QIIME; offers

additional custom analysis modules

16S rRNA gene sequences Riehle et al.,

2012

PlutoF http://unite.ut.ee/

workbench.php

Quality filtering, separation of sequence by

barcode, OTUs, taxonomic identities

ITS sequences Abarenkov

et al., 2010

(Meta)genome analysis

IMG and IMG/M http://img.jgi.doe.gov Quality filtering; genome and metagenome

assembly and annotation; comparative

analysis of genomes or metagenomes

Shotgun genomes and

metagenomes

Markowitz

et al., 2010

MG-RAST http://metagenomics.

anl.gov

Quality filtering; taxonomic and functional

annotation; no assembly provided

Shotgun metagenomes, marker

gene surveys

Meyer et al.,

2008

CAMERA http://camera.calit2.

net

Quality filtering; metagenome assembly and

annotation; viral diversity analyses

Shotgun metagenomes, marker

gene surveys for Bacteria,

Archaea and viruses

Sun et al.,

2011

EBI Metagenomics https://www.ebi.ac.

uk/metagenomics

Sequence archiving; quality filtering;

taxonomic analysis of 16S reads; functional

annotation

Shotgun genomes, metagenomes,

marker gene surveys

Hunter et al.,

2011
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minimize errors as a result of sequencing “noise”; (2)

cluster sequences into operational taxonomic units

(OTUs) on the basis of similarity; (3) assign identities to

each sequence through comparison to reference databases;

and (4) perform additional analyses including the calcula-

tion of diversity indices, evaluation of sample-to-sample

similarities and differences, and detection of features that

distinguish one community from another.

21.7.1.3 Quality Criteria

The sequencing process is inherently prone to error (i.e.,

the incorporation of incorrect base calls during sequenc-

ing). Such errors include substitutions made by DNA

polymerases, chimeric sequence formation and the diffi-

culties entailed in reliably reproducing homopolymeric

regions of sequence (Schloss et al., 2011). Although these

error rates vary among sequencing platforms and tend to

be relatively low, their cumulative effects on marker gene

survey data can alter our perception of microbial commu-

nity diversity. As a result, it is common to employ a

series of quality filters to the sequence data prior to analy-

sis. These include:

l The removal of low quality sequences

As each base is incorporated during a sequencing reac-

tion, a score indicating the quality of each base call is

also generated and recorded into the sequencing record.

The greater the number of errors in a stretch of

sequence, the lower the quality score tends to be.

Sequences can be trimmed according to quality scores,

and this can be done in one of two ways. The first

involves trimming away low-scoring regions of sequence

from each read and retaining what remains. The second

removes entire sequences from a data set on the basis of

average read quality. Typically, sequences with an aver-

age quality score lower than 20 are removed.

From time to time, a base position cannot be called

with certainty. These are known as ambiguous base

calls, and they are indicated in a stretch of sequence

by the letter N (e.g., ATCCN). Sequences containing

ambiguous base calls are indicators of poor sequence

quality (Huse et al., 2007), and are typically removed

from analysis.
l The removal of sequences that are too long or too

short

Sequences that are very short or very long, relative to

the expected sequence length for a given sequencing

platform, tend to be of lower quality and contain large

numbers of errors (Huse et al., 2007). As a result,

users typically filter out these sequences. For example,

it is common to remove sequences that are shorter

than 200 bp or longer than 1000 bp from sequence

runs generated on the Roche 454 platform, which

average 450 bp in length.

l The removal of sequences containing exceptionally

long homopolymers

Homopolymeric runs are regions of sequence in which

the same base call is incorporated multiple times in a

row. The sequence ACGGGGGGGTC, for example,

contains a homopolymer of seven guanine residues.

Although homopolymers do exist in nature, they can

occur erroneously during the sequencing process

(Huse et al., 2007). Some sequencing platforms (the

Roche 454 platform, in particular) have difficulty

reproducing homopolymeric sequences correctly. As a

precaution against spurious homopolymers, most anal-

ysis platforms allow users to define an acceptable

homopolymer length (e.g., a homopolymer limit of

6 is commonly utilized), and filter out sequences

containing longer homopolymeric spans.
l Barcode and primer trimming and the removal of

sequences containing mismatches to their barcode

or primer sequences
High-throughput sequencing platforms offer the ability

to multiplex samples for sequencing. Multiplexing allows

pools of DNA amplicons originating from multiple sam-

ples to be mixed together and sequenced simultaneously.

The incorporation of barcodes into the amplicon

sequences permits them to be sorted bioinformatically

and attributed back to their sample of origin. Barcodes,

also known as tags, are typically short (i.e., 8�12 bp in

length) sequences that can be ligated onto PCR products

after they are produced or incorporated into the sequenc-

ing primer.

Although barcodes provide a means for assigning

reads to their sample of origin, they also represent an

additional opportunity for quality control. Typically,

sequences that contain errors (i.e., incorrect base calls)

in their barcode sequence are considered to be of low

quality and are removed from analysis, although some

protocols will accept one or two mismatches

(Caporaso et al., 2010; Schloss et al., 2011). This is

also true of primer sequences. Once sequences have

been evaluated for barcode and primer mismatches

and pooled by sample of origin, the barcode and

primer sequences are trimmed away.

21.7.1.4 Removal of Chimeras

In Greek mythology, the chimera was described as a monster

that was part lion, part goat and part snake. During the PCR

process, it is possible for DNA polymerase to begin copying

one target, become disrupted and finish its amplification

cycle by picking up copying a second target. The resulting

product is a hybrid of the two original templates and is com-

monly referred to as a chimera, or chimeric sequence

(Figure 21.7). It is estimated that chimeric reads may account

for 5% or more of sequence libraries (Ashelford et al., 2005),

and the risk for chimera production is potentially problematic
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when one is trying to characterize the composition and diver-

sity of a mixed microbial community.

The detection of chimeras typically involves the com-

parison of each individual read to all others within a

sequence library or a reference database. Those that

appear to have strong similarities to two different and

divergent “parent” sequences are typically flagged as

potential chimeras. Multiple software packages for the

detection of chimeras are available. The earliest ones

were developed for the analysis of small sequence librar-

ies and are generally not capable of analyzing large, high-

throughput sequence libraries [e.g. Pintail (Ashelford

et al., 2005), Chimera Check (Cole et al., 2007),

Bellerophon (Huber et al., 2004)]. Newer packages like

ChimeraSlayer (Haas et al., 2011), UChime (Edgar et al.,

2011) and B2C2 (Gontcharova et al., 2010) are more fre-

quently used for this purpose. Regardless of the chimera

detection package that one chooses, users are cautioned to

consider that the output generated only identifies potential

chimeras. The results should be reviewed in greater detail,

when possible, as “true” (i.e., nonchimeric) sequences can

be flagged incorrectly.

21.7.1.5 The Operational Taxonomic Unit (OTU)
Concept

The concept of a bacterial species can be difficult to

define. Revisions to existing taxonomies are published on

a regular basis with phylogenetic relationships constantly

being redefined on the basis of new molecular informa-

tion (Information Box 21.1). Horizontal gene transfer

between individual bacteria obscures relationships that

are defined on the basis of function, and it is widely

acknowledged by microbiologists that we have only just

begun to characterize and classify the extensive diversity

of microbial species.

With all of this as a background, sequence-based sur-

veys emerged as a means of characterizing individual bac-

teria and microbial communities at large. As a means of

grappling with the questions of how to quickly distinguish

one species from another when many species are present

in a given sample, the concept of the operational taxo-

nomic unit (OTU) emerged. DNA�DNA hybridization

studies have long been a gold standard for defining species

similarity, but scientists noticed that bacteria that share

high levels of similarity via DNA�DNA hybridization

also shared a high degree of similarity between their 16S

rRNA gene sequences (Stackenbrandt and Goebel, 1994).

This concept has also been applied to fungi (O’Brien

et al., 2005; Amend et al., 2010), although the ITS region

is typically utilized instead of the small ribosomal subunit.

The OTU is a computational construct that is used to

represent species, and it is heavily utilized in the field of

microbial ecology. OTUs are defined on the basis of

sequence similarity, and typically a 97% sequence simi-

larity cutoff is employed. That is, if two sequences have

97% of their base calls in common over the entire length

of both sequences, they are considered to belong to the

same OTU. OTUs are convenient in that they represent

an entity that can be counted and used as the basis for

diversity estimates (Schloss and Handelsman, 2005), and

they are not tied to known biological diversity (i.e., they

Information Box 21.1 The Evolving Taxonomy of

Microorganisms

One of the challenges for phylogenetic classification of micro-

bial communities and interpretation of these data is the dra-

matic evolution of microbial taxonomy, especially over the past

few decades. For example, one of the most-studied 2,4-D-

degrading bacteria was originally named Alcaligenes eutrophus

JMP134 after its isolation from soil (Don and Pemberton,

1981); however, a search of the literature will find that this bac-

terium has been referred to by multiple names over the past

three decades including:

Alcaligenes eutrophus JMP134

k

Ralstonia eutropha JMP134

k

Wautersia eutropha JMP134

k

Cupriavidus necator JMP134

k

Cupriavidus pinatubonensis JMP134

These changes have occurred as the bacterium and related

organisms have been reclassified in light of new information for

a variety of properties including: lipid; composition; 16S rRNA

gene sequence, DNA�DNA hybridization; and phenotype.

Although these continual changes are improving the taxonomic

classification of microorganisms, they can make it even more

difficult to draw functional inferences for environmental micro-

organisms based solely upon comparison of sequence data for

phylogenetic marker genes (e.g., 16S rRNA) to previously clas-

sified organisms, whose characterization may have been pub-

lished under a different name(s) in the literature.

Parent 1

Potential chimera

Parent 2

FIGURE 21.7 A chimeric sequence may be generated during the PCR

process when DNA polymerase begins replicating one strand of DNA

and finishes on another. The resulting chimera contains sequence from

one parent template at the 50 end and the other parent template at the 30

end. The detection of chimeric sequences often involves BLAST-like

searches of reference databases or the other reads produced in the same

sequence library, in an attempt to identify reads that share a high degree

of similarity with multiple “parent” sequences.
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can be used to quantify previously undescribed or unchar-

acterized organisms). They also allow large, complex col-

lections of sequence data to be summarized quickly in

text format. However, one of the major downfalls of

OTUs is that without additional characterization, they

lack the ability to convey information about phylogenetic

relationships, or the degree of similarity, shared with

other OTUs. Although all of the sequences that belong to

an OTU are, by definition, closely related to one another

(i.e., 97% sequence similarity is often used as the cutoff

for all sequences within an OTU), the ability to discern

whether “OTU A” and “OTU B” are similar to one

another can quickly become lost.

21.7.1.6 Diversity Analyses

What is diversity? Biological and ecological diversity are

concepts that deal with richness, variability and variety

within the context of an environmental system (i.e., a

defined unit) (see also Chapter 19). This may be genetic

diversity, organism diversity or ecological diversity

(Magurran, 2004). In the context of microbial communities,

we typically consider aspects of all three. Genetic diversity,

often in the form of marker gene sequences, is used as a

proxy to describe organism diversity (i.e., OTUs or spe-

cies), and communities of microorganisms are compared

with one another in an attempt to describe the richness and

variation that exists within and between communities.

Two key concepts contribute to our understanding of

diversity. For the sake of discussion, we will use the

terms “species” and “communities” here, but other enti-

ties (e.g., genes, taxonomic families) could be used in

their place. The first of these concepts is richness, or the

number of different types of species that exist within a

community. This is a relatively easy concept to define,

but in practice it is often difficult to quantify with 100%

certainty, because it is extremely difficult to sample

microbial communities exhaustively.

The second concept that contributes to our understand-

ing of diversity is evenness, a term which describes the

variability of species abundances. An extremely “even”

community is one in which all species are present in simi-

lar proportions. As an example of an even community,

consider an assemblage that contains four species, each of

which accounts for 25% of the individuals (or biomass) in

the community. In contrast, an “uneven” community is

one in which large disparities exist with respect to the rel-

ative abundances of its members. Like the example pro-

vided above, an uneven community could also contain

four species, but in this case, one species accounts for

60% of the community, the second accounts for 30% of

the community, the third accounts for 7% of the commu-

nity and the last accounts for the remaining 3%.

As a means of communicating information about

diversity, the concepts of richness and evenness are often

communicated as a single value, known as a diversity

index. Multiple diversity indices have been developed

(Information Box 21.2), and each has strengths, weak-

nesses and biases (Magurran, 2004). A full discussion of

these is beyond the scope of this chapter, but some of the

most commonly utilized indices and their applications

will be described here.

Alpha diversity refers to the diversity of a defined

unit, sample, assemblage or habitat (Rosenzweig, 1995),

and it is often described in terms of species or OTU rich-

ness, the Shannon (or Shannon�Weiner) index and/or the

Simpson index. Because indices like Shannon and

Simpson can be biased by disparities in sampling effort

or sample size (Magurran, 2004), it is common to sub-

sample sequence (or OTU) libraries to an even depth

before calculating diversity index values in order to facili-

tate head-to-head comparisons between one’s samples.

Typically, this is accomplished by randomly selecting an

equal number of sequences from each sample in one’s

study prior to the calculation of diversity values.

The Shannon index (H0) (Shannon and Weaver, 1949)

is based on information theory and attempts to quantify

the uncertainty surrounding one’s ability to predict, in

advance, the identity of an organism sampled at random

from a dataset (or community). It is based on the idea

that both the number of species in a community and their

relative abundances contribute to the “complexity” of a

community, and thus the likelihood of being able to cor-

rectly predict the identity of an organism randomly sam-

pled from the community. The Shannon index is

calculated as:

H0 52Σρiln ρi

where ρi is the proportion of the ith species in the commu-

nity. This could be species “A,” “B,” “C,” etc. The value

of the proportion of each species in the community multi-

plied by the log of that value is calculated for every spe-

cies in the community, and then summed to generate the

Shannon index score. Natural log, log 2 or log 10 can be

used, but natural log is commonly employed. Although

larger Shannon index values are generally considered to

represent greater levels of diversity, the means by which

the index is calculated make it difficult to interpret

whether changes to the statistic are a result of changes to

richness, evenness or both. Despite this, the Shannon index

is commonly utilized to describe microbial diversity.

Like the Shannon index, Simpson’s index (Simpson,

1949) deals with probabilities. More specifically, it

attempts to define the probability of any two organisms

being drawn from the same community belonging to the

same species. Although defining these probabilities inher-

ently deals with defining the number of species in a com-

munity (i.e., its richness), the Simpson index tends to

have a greater focus on species dominance (i.e., evenness)
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than it does on species richness. The Simpson index (D)

is calculated as:

D5Σρ2i
where dominance (D) is calculated as the sum of the

squared proportions of all species in a given community.

Large values of D are typically interpreted to represent

high dominance and low diversity, whereas small values

of D tend to represent lower dominance, higher diversity

communities. Because the interpretation of these values

is not necessarily intuitive, ecologists commonly calcu-

late inverse Simpson (1/D) or subtract Simpson from

1(12D) to obtain a value that is more easily

interpreted.

Once one has described the diversity within a commu-

nity, it is common to want to compare diversity among

communities along gradients (Whittaker, 1960) or sepa-

rated by space and time. This is also known as beta diver-

sity. A typical first step in describing beta diversity is to

calculate the degree of similarity shared between commu-

nities in terms of their species composition, species distri-

bution or both. The terms similarity and distance are

frequently used to describe the degree to which two com-

munities resemble one another, and they are the inverse

of one another (i.e., a similarity of 30% is equivalent to a

dissimilarity or distance of 70%).

Multiple approaches to calculating community similar-

ity exist. As mentioned above, some indices, like the

Information Box 21.2 Diversity Indices

Although diversity can be characterized at multiple levels

(Chapter 19), diversity indices are most frequently used to

describe alpha-diversity and beta-diversity. An introduction to

commonly used diversity indices is provided below, but many

others have been developed and may be encountered in the

literature.

Commonly used alpha-diversity indices include:

Species richness (observed species)—a count of the number of

unique species that occur in a sample or community

Shannon (H0)—the Shannon (or Shannon�Wiener) index con-

siders both the number of unique species and their relative

abundances within a sample (Shannon and Weaver, 1949).

Larger values reflect communities with greater species rich-

ness and evenness, while lower numbers reflect communities

with fewer species and/or a very uneven distribution among

them (e.g., one species may account for a very large percent-

age of the community).

Simpson (D)—the Simpson index evaluates the relative abun-

dances of all species in a community, and attempts to define

the probability that any two organisms drawn from the same

community will be of the same species (Simpson, 1949;

Magurran, 2004). Small values of the Simpson index tend to

reflect communities with high richness and low dominance,

and high values reflect communities with (potentially) lower

richness and high dominance (i.e., most of the community

belongs to one or a few species). The Simpson index is often

presented in inverse form (1/D or 12D) so that large num-

bers represent increasing evenness and smaller numbers rep-

resent increasing dominance.

Chao I—the Chao I index is a correction factor for observed rich-

ness. It evaluates the number of species that occur once (sin-

gletons) versus those that occur twice (doubletons), and

attempts to estimate the number of species that would be cap-

tured if the entire community could be sampled exhaustively

(Chao, 1984).

Rarefaction—Rarefaction is not an index, but rather a technique

used to assess species richness. It involves plotting the num-

ber of unique species detected versus the number of organ-

isms sampled. The shape of the resulting curve is used to

indicate the “completeness” of a survey. A curve that flattens

and reaches a clear asymptote suggests that the majority of

the diversity in a community has been captured, while one

that maintains a steep slope indicates that more sampling is

needed.

Phylogenetic diversity—also known as Faith’s diversity (Faith,

1992), this index quantifies the total length of the branches

needed to account for a set of taxa on a phylogenetic tree.

Increasing values of the index reflect increasing levels of

diversity within the community being described.

Commonly used beta-diversity indices include:

Sørensen index—evaluates the degree of similarity between two

communities by quantifying the number of species shared in

common, relative to the total number of species held in both

communities (Sørensen, 1948). This metric can be used with

presence/absence (i.e., binary) data.

Jaccard index—evaluates the degree of similarity between two

communities by quantifying the number of species shared in

common relative to the sum of the number of species

uniquely held by each community (Jaccard, 1908). This met-

ric can be used with presence/absence data.

Bray�Curtis dissimilarity—Bray�Curtis dissimilarity (Bray and

Curtis, 1957) is an extension of the Sørensen index.

Calculated the same way, it is allows for quantitative values

(i.e., counts or relative abundances) to be used instead of

binary data.

Unifrac distance—a measurement that reflects the amount of

branch length shared by two or more communities when their

members are placed on a common phylogenetic tree

(Lozupone and Knight, 2005). The Unifrac distance is equiva-

lent to “1 minus the fraction of shared branch length.”
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Sörensen or Jaccard indices, consider only the presence or

absence of species between two samples. Others, like the

Bray�Curtis distance, Spearman distance, Hellinger dis-

tance, consider species’ presence/absence and relative

abundances. The Unifrac distance (Lozupone and Knight,

2005), a third type of measure, attempts to place commu-

nity similarities and distances in a phylogenetic context,

and quantifies the amount of phylogeny (i.e., branch

length on a common phylogenetic tree) shared between

two communities. Once similarity or dissimilarity values

have been calculated among a set of communities, they

are commonly communicated using ordination plots.

Nonmetric multidimensional scaling (NMDS) and princi-

pal coordinates analysis (PCoA) plots are frequently used

for this purpose (Figure 19.5).

21.7.1.7 Phylogenetic Analyses

Phylogenetic analysis is another route for analyzing

marker gene sequences, especially in the case of 16S

rRNA gene data. The use of the Unifrac metric helps to

place communities in a phylogenetic context by first build-

ing a large phylogenetic tree, and then calculating the

amount of the tree that is shared between two or more

communities. The amount of phylogenetic diversity within

a single sample can also be calculated this way.

From the perspective of single sequences or OTUs,

phylogenetic analysis more typically involves trying to

place a sequence or OTU of interest into phylogenetic con-

text by comparing it with sequences of known origin. This

process is similar to that which is used to generate OTUs:

(1) a collection of sequences is gathered; (2) all sequences

are compared with one another to determine the amount

of sequence similarity that they share with one another;

(3) these distances are interpreted and used to identify

“nearest neighbors” (i.e., closest relatives), and may be

used to construct a phylogenetic tree. This approach is

commonly used to help describe the identity of a sequence

or OTU whose best match in a public database is an uncul-

tured or unclassified bacterium (or archaeaon or fungus).

It has also been used to identify highly novel organisms

and provide justification for the addition of new phyla

(Hugenholtz et al., 1998), and potentially even taxonomic

domains (Wu et al., 2011).

21.7.2 Bioinformatics and Analysis
of Genomic/Metagenomic Data

Common first steps in the analysis of genomic or metage-

nomic data are an assessment of sequence quality and the

removal of low-quality reads. Depending on the down-

stream analyses that will be performed, this can be a very

important step. As each base is incorporated during a

sequencing reaction, a score indicating the quality of each

base call is also generated and recorded into the sequenc-

ing record. Often, base calls at the 50 and 30 ends of a

sequence read are of lower quality than those that are

incorporated in the middle. Likewise, overly long or

extremely short reads also tend to be of lower quality,

especially those produced on the 454 platform (Huse

et al., 2007). Quality scores can be used by some assembly

algorithms, but many commonly used assemblers do not

take them into consideration (Mende et al., 2012). As a

result, trimming and quality filtering of raw sequence

reads is often advised, and tends to lead to more accurate

genome and metagenome assemblies (DiGuistini et al.,

2009; Mende et al., 2012).

21.7.2.1 Assembly-Based Approaches

Once a genome or metagenome has been sequenced, it is

much like a jigsaw puzzle (or a collection of many jigsaw

puzzles). It represents a large collection of pieces, some of

which are informative on their own, and others of which

yield better information and a more complete picture once

they are assembled and placed in context with other frag-

ments. Also like a jigsaw puzzle, genome and metage-

nomic sequence data may contain pieces (i.e., sequence

fragments) that are duplicated, misshapen (i.e., contain

errors) or missing. These add to the challenge of sequence

assembly and interpretation, but they do not preclude it

completely.

During the assembly process, fragments of sequence

that originated from the same parent sequence are identi-

fied, and ordered relative to one another to build a larger,

contiguous strand of sequence, also known as a contig.

Contigs are typically constructed by identifying regions

of common, overlapping sequence that are shared

between the two smaller sequence fragments. Depending

on the sequencing approach used, spatial information

(i.e., known distances between fragments) may also be

available to aid in the assembly process, and provide a

degree of quality control. For example, if it is known that

the ends of two different fragments should be oriented

1000 bp apart from one another, the distance can be used

as a placeholder, which helps to constrain (i.e., control)

the addition of new sequences and contigs. As multiple

contigs are joined into longer and longer sequences, scaf-

folds are formed. Scaffolds are not necessarily contiguous

runs of sequence, but can include gaps of known length.

Depending on the complexity of the sample and the depth

to which it is sequenced, assembly from metagenomic

sequencing can yield high-quality draft, or even complete

genome sequences.

Multiple approaches and software packages have been

developed for the purpose of sequence assembly. The ear-

liest assemblers were designed to piece together single

genomes with fragments of relatively long read length. As

the high-throughput sequencing of shorter gene fragments
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and the sequencing of mixed communities (i.e., metagen-

omes) became more common, newer assemblers designed

to handle greater levels of complexity were developed

[e.g., Velvet (Zerbino and Birney, 2008), SOAP (Li et al.,

2010)].

Regardless of the sequence data or assembly algorithm

used, the assembly process can be quite computationally

intensive. As a result, preprocessing algorithms have

emerged to help reduce the complexity and redundancy

of the input data, and reduce the computational load

required to complete the assembly (Pell et al., 2012). This

is particularly important in complex and highly diverse

communities, such as those found in soil, where large

amounts of sequence data must be generated in order to

provide adequate coverage of the community.

21.7.2.2 Mapping to Reference Genomes

A reference genome, also known as a reference assembly,

is a collection of nucleic acid sequence and annotation

information describing the gene content of an organism.

The nucleic acid sequences may be assembled (i.e.,

pieced together from smaller sequence fragments) into

contigs, scaffolds or complete chromosomes. Often, open

reading frames (ORFs) for individual genes will be identi-

fied, and attempts will be made to annotate or assign an

identity and/or function to each of the ORFs.

Reference genomes play an important role in shaping

our interpretation of new genomes and metagenomic data.

Just as the “reference” portion of their name implies, refer-

ence genomes can serve as a framework for describing the

gene content—both in terms of taxonomic origin and

potential function—of new genomes and metagenomes. A

common step in analyzing shotgun sequence datasets, like

metagenomes, is to “map” the unassembled reads to a col-

lection of reference genomes. This can be done using

BLAST searches, but fast, memory-efficient alignment

algorithms, such as bowtie (Langmead et al., 2009) or

BWA (Li and Durbin, 2010), are more commonly used for

this purpose. The mapping algorithms search for regions of

homology (i.e., similarity) between the reference genome

and the sequence of interest. The amount of similarity that

they share, the degree of coverage (i.e., amount of the

genome that generates matches within your pool of shot-

gun sequences) and the depth of coverage (i.e., the number

of copies of each gene or genome found within the shotgun

sequence pool) influence the quality of the amount of

information that can be derived from the “map.”

The mapping of reads to reference genomes can be

used to identify and remove host-derived reads if the com-

munity of interest has come from a plant, animal or insect

host. By mapping metagenomic reads from various body

sites sampled during the Human Microbiome Project to a

reference (human) genome, it was discovered that human-

derived reads accounted for approximately 1% of the

sequences generated from stool, but 80% of more of the

sequences generated from samples of saliva, the anterior

nares (nostril) and vagina (Human Microbiome Project

Consortium, 2012). While the identification and removal

of host “contamination” represents an important applica-

tion of reference genome mapping, the technique can also

be used to evaluate the potential origins of your reads. For

example, by mapping metagenomic sequence reads to ref-

erence genomes, researchers studying a mixed-community,

cellulosic bioreactor system were able to determine that

their reactor harbored a variety of cellulose- and xylose-

degrading bacteria, including Clostridium thermocellum,

Thermoanaerobacterium thermosaccharolyticum and

Moorella thermoacetica (Hollister et al., 2012). They also

learned that their reactor-housed bacteria shared some sim-

ilarity with previously sequenced Bacillus spp.; however,

the degree of similarity was low enough and the maps

sparse enough to suggest that they had encountered novel,

or at least unsequenced, species.

Historically, collections of reference genomes have

been biased toward the inclusion of model organisms,

pathogens and other organisms of economic or biotechno-

logical importance, but in recent years, large-scale

sequencing projects like the Human Microbiome Project

(HMP) (Nelson et al., 2010) and the Genomic

Encyclopedia of Bacteria and Archaea (GEBA) (Wu

et al., 2009) have increased the scope and size of refer-

ence genome collections, systematically generating new

genome sequences in the attempt to fill out the underrep-

resented portions of the microbial tree of life. They have

utilized innovative isolation and culture techniques (Pope

et al., 2011), single cell sequencing (Rinke et al., 2013)

and in some cases assembly from metagenome sequences

(Hess et al., 2011).

Since the first bacterial genome (Haemophilus influ-

enza) was sequenced in the mid-1990s (Fleischmann et al.,

1995), the collection of publicly available reference gen-

omes has grown to include. 6000 high-quality draft or

completed bacterial and archaeal reference genomes

and. 300 eukaryotic reference genomes (Genomes

Online Database, http://www.genomesonline.org, July

2013). A recent evaluation of the publically available ref-

erence genome collection found that the addition of new

genomes as a result of the Human Microbiome Project ref-

erence genome sequencing initiative resulted in a 20�40%

improvement in read recruitment from human metagen-

ome samples than would have been possible previously

(Nelson et al., 2010). Likewise, the recent release of. 200

genomes generated by single cell sequencing is estimated

to have increased the phylogenetic coverage of publically

available reference genomes by .11% (Rinke et al.,

2013). Although this growth is impressive, much more

work remains to be done (Fodor et al., 2012). Our under-

standing and appreciation of the microbial world is funda-

mentally linked to the information contained in reference
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genome collections, and it is anticipated that continued

efforts to expand these collections will provide new insight

into microbial structure, function and evolution.

21.7.2.3 Databases

As the ability to generate genome and metagenome

sequence data has grown, so too has the need to analyze,

store and share it. Even as improved algorithms for

sequence assembly and annotation are developed, the

archiving, analysis and dispersal of genome and metage-

nomic sequence data is no trivial task. Powerful servers

with large storage capacity are typically required to han-

dle the data associated with these large and ever-growing

projects. These resource requirements are often greater

than individual academic laboratories can support, but

centralized databases and similar repositories also serve a

valuable purpose in their ability to facilitate the sharing

of data within the scientific community.

A variety of databases have been developed with these

needs in mind. Some, like the Sequence Read Archive

(SRA) at the National Center for Biotechnology

Information (NCBI) or the European Nucleotide Archive

(ENA) at the European Molecular Biology Laboratory,

house compressed versions of the raw (or sometimes

assembled) sequence data and associated metadata from

genome and metagenomic sequencing projects. Others,

like the Integrated Microbial Genomes and Metagenomes

(IMG) system (Markowitz et al., 2010), MG-RAST

(Meyer et al., 2008), CAMERA (Sun et al., 2011) and the

EBI Metagenomics service (https://www.ebi.ac.uk/meta-

genomics/), will house data, but also allow users to

upload genome or metagenomic sequence data and ana-

lyze it. Common options offered by these platforms often

include sequence assembly, annotation and the ability to

carry out comparative analyses.

In addition to the archiving and analysis of genome

and metagenome data, the rapid growth of genomic and

metagenomic sequencing projects had led to the need to

track and catalogue them. Despite the fact that the costs

associated with generating sequence have declined, stor-

age and dissemination of data still remain a challenge,

and preventing the duplication of projects can help to

reduce these burdens. The Genomes OnLine Database

(GOLD) (Pagani et al., 2012), first established in 1997,

has emerged to fill this need. GOLD serves as a central

repository for information about sequencing projects,

including genomes and metagenomes, as well as genome

resequencing projects, single cell sequencing projects and

(meta)transcriptomes. Information catalogued in GOLD

includes project type, sequencing status (e.g., targeted, in

progress, complete), project metadata, organism phylog-

eny and contact information for the scientist or research

group leading the project efforts.

21.7.3 Integration of ’Omics Data

The ability to generate multiple ’omics datasets from the

same system, at the same point in time, has the potential

to provide a highly detailed picture of the system’s biology

and ecology. Efforts to integrate multiple’omics technolo-

gies with one another are still relatively few, especially in

mixed microbial communities, and they often rely on the

layering of ’omics data onto reference pathways or the

correlation of one ’omics data set with another.

21.7.3.1 Layering of -Omics Data Using Reference
Databases

Reference databases, such as the Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa et al., 2012),

BioCyc and MetaCyc (Caspi et al., 2012), provide

curated, and often experimentally verified, information

regarding metabolic pathways, and the enzymes, reac-

tions, compounds and genes that allow them to function.

Although many metabolic pathways occur commonly

across the Tree of Life, these reference databases also

include information regarding the (known) taxonomic dis-

tribution of particular genes and pathways.

Reference databases like KEGG and MetaCyc can

serve as a platform to support the exploration of ’omics

data, and new software tools are emerging to allow these

databases to serve as a platform for ’omics integration.

The KEGG database can be accessed directly through a

web-based interface (http://www.genome.jp/kegg/), allow-

ing users to explore genes, compounds and pathways, or

to input information about differentially detected genes

and compounds to assess which functional pathways may

be affected. Likewise, the interactive Pathways Explorer

(iPath, http://pathways.embl.de/) is a web-based tool that

allows for the visualization, analysis and customization of

pathway information, and the Pathview package (Luo and

Brouwer, 2013) is a standalone package for multi-’omics

integration.

The value of multiple-’omics datasets is often real-

ized in the ability of one data type to confirm or refute

the results of another. For example, following the

Deepwater Horizon oil spill in the Gulf of Mexico in

2010, Mason et al. (2012) used a combination of meta-

genomic, metatranscriptomic and single-cell genomic

sequencing to characterize microbial community

responses. The shotgun metagenomic sequencing

results revealed that, relative to the microbial commu-

nities inhabiting uncontaminated seawater, the

hydrocarbon-exposed communities were significantly

enriched in genes related to motility, chemotaxis and

aliphatic hydrocarbon degradation, as well as the degra-

dation of more recalcitrant compounds, including ben-

zene, toluene and polycyclic aromatic hydrocarbons

(see also Chapter 31). Analysis of the transcriptome of
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these communities confirmed that the expression of

the chemotaxis, motility and aliphatic hydrocarbon de-

gradation genes was significantly enhanced.

Surprisingly, though, the transcriptomic analysis found

that the expression of genes related to the degradation

of the more recalcitrant compounds had not changed,

demonstrating that although differences in gene abun-

dance profiles can provide strong clues about how a

system works, the addition of transcriptomic and/or

metabolomic data can be important to pinpoint which

genes, compounds and metabolites are actually being

used.

21.7.3.2 Correlation and Network-Based
Approaches

The layering of ’omics data onto reference pathways

allows for the exploration of these datasets in the context

of known, well-characterized reactions and pathways. In

the case of multi-’omics studies, it allows functionally

related data types (e.g., genes and compounds involved in

the same reaction) to be considered in the context of

known biology and biochemical reactions. While layering

approaches can be very useful, they are not necessarily

designed to convey global patterns and relationships

within and between ’omics datasets.

In contrast, correlation and network-based

approaches can be employed to identify co-occurrence

and/or co-abundance patterns within and between

’omics datasets. Correlation and network-based

approaches are relatively simple, and are often naı̈ve to

the errors inherent in ’omics measurements, and the

biology that they are being used to describe. These

approaches often employ Pearson or Spearman correla-

tions and can be as simple as asking, “Does gene ‘A’

occur with similar abundances as genes ‘B’ and ‘C’ or

metabolite ‘D’ across all of my samples, or do some

bacteria always (or never) occur together in my sam-

ples?” While these may seem like simple questions, the

potential does exist for correlations to identify artifacts

of the data rather than true biological relationships

(Friedman and Alm, 2012). As such, more sophisticated

methods for examining correlations have been pro-

posed. These include partial least squares regression

(Pir et al., 2006), sparse correlations for compositional

data (Friedman and Alm, 2012) and generalized

boosted linear models (Faust et al., 2012).

Despite the potential pitfalls of correlation-based

analyses, they have been used with success in many stud-

ies, and have the potential to reveal new insights into the

biology of a system of interest. For example, within-

’omic (i.e., analyses using a single-’omic technology)

correlations have been used to assign functional context

to genes of unknown identity (Wang et al., 2012;

Buttigieg et al., 2013), identify genes, metabolites or

bacteria that are associated with, or characteristic of, eco-

logical or environmental subtypes (Bhavnani et al., 2011;

Barberan et al., 2012; Greenblum et al., 2012), and pro-

vide insight into the culture of previously uncultivable

organisms (Duran-Pinedo et al., 2011). Examples of

cross-’omic (i.e., multi-’omic) correlations are fewer in

number, but recent attempts to integrate transcriptome

and metabolite datasets from laboratory chemostats (Pir

et al., 2006) and metabolites and community composition

in the human gut (McHardy et al., 2013) have been

described in the literature. The integration of mixed

’omics datasets is considered to be at the forefront of

science and has tremendous potential for characterizing

environmental microorganisms; however, it represents

a technological challenge that remains to be fully

resolved, especially for the study of complex microbial

communities.

QUESTIONS AND PROBLEMS

1. Discuss the potential advantages and disadvantages of

the various ’omics approaches for characterizing envi-

ronmental microorganisms.

2. What is the value of reference genomes?

3. What kind(s) of information can be learned from 16S

rRNA gene sequences? From genomic or metage-

nomic sequencing?

4. Which ’omics approach provides the most direct indi-

cation of microbial activity.

5. Discuss the major quality criteria used for processing

DNA sequence data.

6. What is microbial diversity? How can it be deter-

mined using ’omics -based approaches?

7. Discuss the major limitations of ’omics approaches

for studying microbial community diversity.
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