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5.5 Approximations to the Binomial and Poisson Distributions

This chapter introduces three probability distributions: the binomial and the Poisson for 
discrete random variables, and the normal for continuous random variables. For a dis-
crete random variable, its probability distribution is a listing of the probabilities of its 
possible outcomes or a formula for fi nding the probabilities. For a continuous random 
variable, its probability distribution is usually expressed as a formula that can be used 
to fi nd the probability that the variable will fall in a specifi ed interval. Knowledge of 
the probability distribution (1) allows us to summarize and describe data through the 
use of a few numbers and (2) helps to place results of experiments in perspective; that 
is, it allows us to determine whether or not the result is consistent with our ideas. We 
begin the presentation of probability distributions with the binomial distribution.

5.1   The Binomial Distribution
As its name suggests, the binomial distribution refers to random variables with two 
outcomes. Three examples of random variables with two outcomes are (1) smoking 
status — a person does or does not smoke, (2) exposure to benzene — a worker was or 
was not exposed to benzene in the workplace, and (3) health insurance coverage — a 
person does or does not have health insurance. The random variable of interest in the 
binomial setting is the number of occurrences of the event under study — for example, 
the number of adults in a sample of size n who smoke or who have been exposed to 
benzene or who have health insurance. For the binomial distribution to apply, the status 
of each subject must be independent of that of the other subjects. For example, in the 
hypertension question, we are assuming that each person’s hypertension status is unaf-
fected by any other person’s status.

5.1.1   Binomial Probabilities

We consider a simple example to demonstrate the calculation of binomial probabilities. 
Suppose that four adults (labeled A, B, C, and D) have been randomly selected and 
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104  Probability Distributions

asked whether or not they currently smoke. The random variable of interest in this 
example is the number of persons who respond yes to the question about smoking. The 
possible outcomes of this variable are 0, 1, 2, 3, and 4.

The outcomes (0, 1, 2, 3, and 4) translate to estimates of the proportion of persons 
who answer yes (0.00, 0.25, 0.50, 0.75, and 1.00, respectively). Any of these outcomes 
could occur when we draw a random sample of four adults. As a demonstration, let us 
draw 10 random samples of size 4 from a population in which the proportion of adults 
who smoke is assumed to be 0.25 (population parameter). We can use a random number 
table in performing this demonstration. Four 2-digit numbers were taken from the fi rst 
10 rows of the fi rst page of random number tables in Appendix B. The 2-digit numbers 
less 25 are considered smokers. The results are shown here:

Sample Random Number No. of Smokers Prop. Smokers

 1 17 17 47 59 2 0.50
 2 26 58 06 84 1 0.25
 3 24 04 23 38 3 0.75
 4 74 83 87 93 0 0.00
 5 72 86 25 09 1 0.25
 6 82 27 49 45 0 0.00
 7 77 58 68 91 0 0.00
 8 17 80 21 66 2 0.50
 9 10 27 10 61 2 0.50
10 07 78 05 54 2 0.50

Three samples have no smokers (estimate of 0.00); two samples have 1 smoker (0.25); 
four samples have 2 smokers (0.50); one sample has 3 smokers (0.75); and no sample 
has 4 smokers (1.00). The sample estimates do not necessarily equal the population 
parameter, and the estimates can vary considerably. In practice, a single sample is 
selected, and in making an inference from this one sample to the population, this 
sample-to-sample variability must be taken into account. The probability distribution 
does this, as will be seen later. Now let us calculate the binomial probability distribution 
for a sample size of four.

Suppose that in the population, the proportion of people who would respond “yes” 
to this question is p, and the probability of a response of “no” is then 1 − p. The probabil-
ity of each of the outcomes can be found in terms of p by listing all the possible out-
comes. Table 5.1 provides this listing.

Since each person is independent of all the other persons, the probability of the joint 
occurrence of any outcome is simply the product of the probabilities associated with 
each person’s outcome. That is, the probability of 4 yes responses is p 4. In the same 
way, the probability of three yes responses is 4p 3(1 − p), since there are four occurrences 
of three yes responses. The probability of two yes responses is 6p 2(1 − p)2; the probabil-
ity of one yes response is 4p (1 − p)3; and the probability of zero yes responses is (1 − p)4. 
If we know the value of p , we can calculate the numerical value of these 
probabilities.

Suppose p is 0.25. Then the probability of each outcome is as follows:

Pr {4 yes responses} = 1 * (0.25)4 * (0.75)0 = 0.0039 = Pr {0 no responses},

Pr {3 yes responses} = 4 * (0.25)3 * (0.75)1 = 0.0469 = Pr {1 no response},
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The Binomial Distribution  105

Pr {2 yes responses} = 6 * (0.25)2 * (0.75)2 = 0.2109 = Pr {2 no responses},

Pr {1 yes response} = 4 * (0.25)1 * (0.75)3 = 0.4219 = Pr {3 no responses},

 Pr {0 yes responses} = 1 * (0.25)0 * (0.75)4 = 0.3164 = Pr {4 no responses}.

The sum of these probabilities is one, as it must be, since these are all the possible out-
comes. If the probabilities do not sum to one (with allowance for rounding), a mistake 
has been made. Figure 5.1 shows a plot of the binomial distribution for n equal to 4 and 
p equal to 0.25.

Table 5.1 Possible binomial outcomes in a sample of size of 4 and their probabilities of occurrence.

 Person

A B C D Probability of Occurrence

ya y y y p * p * p * p = p4 * (1 − p )0

y y y n p * p * p * (1 − p ) = p3 * (1 − p )1

y y n y p * p * (1 − p ) * p = p3 * (1 − p )1

y n y y p * (1 − p ) * p * p = p3 * (1 − p )1

n y y y (1 − p ) * p * p * p = p3 * (1 − p )1

y y n n p * p * (1 − p ) * (1 − p ) = p2 * (1 − p )2

y n y n p * (1 − p ) * p * (1 − p ) = p2 * (1 − p )2

y n n y p * (1 − p ) * (1 − p ) * p = p2 * (1 − p )2

n y y n (1 − p ) * p * p * (1 − p ) = p2 * (1 − p )2

n y n y (1 − p ) * p * (1 − p ) * p = p2 * (1 − p )2

n n y y (1 − p ) * (1 − p ) * p * p = p2 * (1 − p )2

y n n n p * (1 − p ) * (1 − p ) * (1 − p ) = p1 * (1 − p )3

n y n n (1 − p ) * p * (1 − p ) * (1 − p ) = p1 * (1 − p )3

n n y n (1 − p ) * (1 − p ) * p * (1 − p ) = p1 * (1 − p )3

n n n y (1 − p ) * (1 − p ) * (1 − p ) * p = p1 * (1 − p )3

n n n n (1 − p ) * (1 − p ) * (1 − p ) * (1 − p ) = p0 * (1 − p )4

ay indicates a yes response and n indicates a no response

Figure 5.1 Bar chart 
showing the binomial 
distribution for n = 4 
and p = 0.25.

Are these probabilities reasonable? Since the probability of a yes response is assumed 
to be 0.25 in the population, in a sample of size four, the probability of one yes response 
should be the largest. It is also reasonable that the probabilities of zero and two yes 
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106  Probability Distributions

responses are the next largest, since these values are closest to one yes response. The 
probability of four yes responses is the smallest, as is to be expected. Figure 5.1 shows 
the rapid decrease in the probabilities as the number of yes responses moves away from 
the expected response of one.

In the calculation of the probabilities, there are several patterns visible. The exponent 
of the probability of a yes response matches the number of yes responses being consid-
ered and the exponent of the probability of a no response also matches the number of 
no responses being considered. The sum of the exponents is always the number of 
persons in the sample. These patterns are easy to capture in a formula, which eliminates 
the need to enumerate the possible outcomes. The formula may appear complicated, but 
it is really not all that diffi cult to use. The formula, also referred to as the probability 
mass function for the binomial distribution, is
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symbol n! is called n factorial, and nCx is read as n combination x, which gives the 
number of ways that x elements can be selected from n elements without regard to order 
(see Appendix A for further explanations). In this formula, n is the number of persons 
or elements selected, and x is the value of the random variable, which goes from 0 to 
n. Another representation of this formula is
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where B represents binomial. The equality of B(x; n, p) and B(n − x; n, 1 − p) is a 
symbolic way of saying that the probability of x yes responses from n persons, given 
that p is the probability of a yes response, equals the probability of n − x no 
responses.

The smoking situation can be used to demonstrate the use of the formula. To fi nd 
the probability that X = 3, we have
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This is the same value we found by listing all the outcomes and the associated probabili-
ties. There are easier ways of fi nding binomial probabilities, as is shown next.

There is a recursive relation between the binomial probabilities, which makes it easier 
to fi nd them than to use the binomial formula for each different value of X. The relation 
is
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for x ranging from 0 to n − 1. For example, the probability that X equals 1 in terms of 
the probability that X equals 0 is
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which is the same value we calculated above.

A still easier method is to use Appendix Table B2, a table of binomial probabilities 
for n ranging from 2 to 20 and p beginning at 0.01 and ranging from 0.05 to 0.50 in 
steps of 0.05. There is no need to extend the table to values of p larger than 0.50 because 
B(x; n, p) equals B(n − x; n, 1 − p). For example, if p were 0.75 and we wanted to fi nd 
the probability that X = 1 for n = 4, B(1; 4, 0.75), we fi nd B(3; 4, 0.25) in Table B2 and 
read the value of 0.0469. These probabilities are the same because when n = 4 and the 
probability of a yes response is 0.25, the occurrence of three yes responses is the same 
as the occurrence of one no response when the probability of a no response is 0.75.

Another way of obtaining binomial probabilities is to use computer packages (see 
Program Note 5.1 on the website). The use of computer software is particularly nice, 
since it does not limit the values of p to being a multiple of 0.05 and n can be much 
larger than 20. More will be said about how large n can be in a later section.

Table 5.2 Probability mass (Pr{X = x}) and cumulative (Pr{X £ x}) distribution functions for the 
binomial when n = 4 and p = 0.25.

 x 0 1 2 3 4

Mass: Pr{X = x} 0.3164 0.4219 0.2109 0.0469 0.0039
Cumulative: Pr{X ≤ x} 0.3164 0.7383 0.9492 0.9961 1.0000

The probability mass function for the binomial gives Pr{X = x} for x ranging from 
0 to n (shown in Figure 5.1). Another function that is used frequently is the cumulative 
distribution function (cdf). This function gives the probability that X is less than or 
equal to x for all possible values of X. Table 5.2 shows both the probability mass func-
tion and the cumulative distribution function values for the binomial when n is 4 and p 
is 0.25. The entries in the cumulative distribution row are simply the sum of the proba-
bilities in the row above it, the probability mass function row, for all values of X less 
than or equal to the value being considered. Cumulative distribution functions all have 
a general shape shown in Figure 5.2. The value of the function starts with a low value 
and then increases over the range of the X variable. The rate of increase of the function 
is what varies between different distributions. All the distributions eventually reach the 
value of one or approach it asymptotically.

Figure 5.2 Cumulative 
binomial distribution 
for n = 4 and p = 0.25.
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108  Probability Distributions

As seen above, if we know the data follow a binomial distribution, we can completely 
summarize the data through their two parameters, the sample size and the population 
proportion or an estimate of it. The sample estimate of the population proportion is the 
number of occurrences of the event in the sample divided by the sample size.

5.1.2   Mean and Variance of the Binomial Distribution

We can now calculate the mean and variance of the binomial distribution. The mean is 
found by summing the product of each outcome by its probability of occurrence — that 
is,
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=
∑ x X x
x

n

Pr .
0

This appears to be different from the calculation of the sample mean in Chapter 3, but 
it is really the same because in Chapter 3 all the observations had the same probability 
of occurrence, 1/N. Thus, the formula for the population mean could be reexpressed 
as
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The mean of the binomial variable — that is, the mean number of yes responses out 
of n responses when n is 4 and p is 0.25 is

0 ⋅ (0.3164) + 1 ⋅ (0.4219) + 2 ⋅ (0.2109) + 3 ⋅ (0.0469) + 4 ⋅ (0.0039) = 1.00 
 = np

or in general for the binomial distribution,

 m = np.

The expression of the binomial mean as np makes sense, since, if the probability of 
occurrence of an event is p, then in a sample of size n, we would expect np occurrences 
of the event.

The variance of the binomial variable, the number of yes responses, can also be 
expressed conveniently in terms of p. From Chapter 3, the population variance was 
expressed as
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In terms of the binomial, the X variable takes on the values from 0 to n, and we again 
replace the N in the divisor by the probability that X is equal to x. Thus, the formula 
becomes
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which, with further algebraic manipulation, simplifi es to

 s2 = np (1 − p).
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The Binomial Distribution  109

When n is 4 and p is 0.25, the variance is then 4(0.25)(1 − 0.25), which is 0.75.

There is often interest in the variance of the proportion of yes responses — that is, 
in the variance of the number of yes responses divided by the sample size. This is the 
variance of the number of yes responses divided by a constant. From Chapter 3, we 
know that this is the variance of the number of yes responses divided by the square of 
the constant. Thus, the variance of a proportion is

 
Var prop

n

n n
. .( ) = −( )

= −( )π π π π1 1
2

Example 5.1

Use of the Binomial Distribution: Let us consider a larger example now. In 1990, 
cesarean section (c-section) deliveries represented 23.5 percent of all deliveries in 
the United States, a tremendous increase since 1960 when the rate was only 5.5 
percent. Concern has been expressed, for example, by the Public Citizen Health 
Research Group (1992) in its June 1992 health letter, reporting that many unneces-
sary c-section deliveries are performed. Public Citizen believes unnecessary c-sec-
tions waste resources and increase maternal risks without achieving suffi cient 
concomitant improvement in maternal and infant health. It is in this context that 
administrators at a local hospital are concerned, as they believe that their hospital’s 
c-section rate is even higher than the national average. Suppose as a fi rst step in 
determining if this belief is correct, we select a random sample of deliveries from 
the hospital. Of the 62 delivery records pulled for 1990, we found 22 c-sections. Does 
this large proportion of c-section deliveries, 35.5 percent (= 22/62), mean that this 
hospital’s rate is higher than the national average? The sample proportion of 35.5 
percent is certainly larger than 23.5 percent, but our question refers to the population 
of deliveries in the hospital in 1990, not the sample. As we just saw, we cannot infer 
immediately from this sample without taking sample-to-sample variability into 
account. This is a situation where the binomial distribution can be used to address 
the question about the population based on the sample.

To put the sample rate into perspective, we need to fi rst answer a question: How 
likely is a rate of 35.5 percent or higher in our sample if the rate of c-section deliver-
ies is really 23.5 percent? Note that the question includes rates higher than 35.5 
percent. We must include them because if the sum of their probabilities is large, we 
cannot conclude that a rate of 35.5 percent is inconsistent with the national rate 
regardless of how unlikely the rate of 35.5 percent is.

We can use the cdf for the binomial to fi nd the answer to this question. The cdf 
enables us to fi nd the probability that a variable is less than a given value — in this 
case, less than the result we observed in our sample. Then we can subtract that prob-
ability from one to fi nd how likely it is to obtain a rate as large or larger than our 
sample rate. It turns out to be 0.0224 (see Program Note 5.1 on the website). This 
means that the probability of 22 or more c-section deliveries is 0.0224. The probabil-
ity of having 22 or more c-sections is very small. It is unlikely that this hospital’s c-
section rate is the same as the national average, and, in fact, it appears to be higher. 
Further investigation is required to determine why the rate may be higher.
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110  Probability Distributions

5.1.3   Shapes of the Binomial Distribution

The binomial distribution has two parameters, the sample size and the population pro-
portion, that affect its appearance. So far we have seen the distribution of one binomial 
— Figure 5.1 — which had a sample size of 4 and a population proportion of 0.25. 
Figure 5.3 examines the effect of population proportion on the shape of the binomial 
distribution for a sample size of 10.

Figure 5.3 Binomial 
probabilities for n = 10 
and p = 0.1, 0.2, and 0.5.
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The plots in Figure 5.3 would look like bar charts if a perpendicular line were drawn 
from the horizontal axis to the points above each outcome. In the fi rst plot with p equal 
to 0.10, the shape is quite asymmetric with only a few of the outcomes having probabili-
ties very different from zero. This plot has a long tail to the right. In the second plot 
with p equal to 0.20, the plot is less asymmetric.

The third binomial distribution, with p equal to 0.50, has a mean of 5 (= np). The 
plot is symmetric about its mean of 5, and it has the familiar bell shape. Since p is 0.50, 
it is as likely to have one less occurrence as one more occurrence — that is, four occur-
rences of the event of interest are as likely as six occurrences, three as likely as seven 
and so on, and the plot refl ects this.

This completes the introduction to the binomial, although we shall say more about 
it later. The next section introduces the Poisson distribution, another widely used 
distribution.

5.2   The Poisson Distribution
The Poisson distribution is named for its discoverer, Siméon-Denis Poisson, a French 
mathematician from the late 18th and early 19th centuries. He is said to have once 
remarked that life is good for only two things: doing mathematics and teaching it (Boyer 
1985). The Poission distribution is similar to the binomial in that it is also used with 
counts or the number of events. The Poisson is particularly useful when the events occur 
infrequently. It has been applied in the epidemiologic study of many forms of cancer 
and other rare diseases over time. It has also been applied to the study of the number 
of elements in a small space when a large number of these small spaces are spread at 
random over a much larger space — for example, in the study of bacterial colonies on 
an agar plate.

Even though the Poisson and binomial distributions both are used with counts, the 
situations for their applications differ. The binomial is used when a sample of size n is 
selected and the number of events and nonevents are determined from this sample. The 
Poisson is used when events occur at random in time or space, and the number of these 
events is noted. In the Poisson situation, no sample of size n has been selected.

5.2.1   Poisson Probabilities

The Poisson distribution arises from either of two models. In one model — quantities, 
for example — bacteria are assumed to be distributed at random in some medium with 
a uniform density of l(lambda) per unit area. The number of bacteria colonies found 
in a sample area of size A follows the Poisson distribution with a parameter m equal to 
the product of l and A.

In terms of the model over time, we assume that the probability of one event in a 
short interval of length t1 is proportional to t1 — that is, Pr{exactly one event} is approxi-
mately lt1. Another assumption is that t1 is so short that the probability of more than 
one event during this interval is almost zero. We also assume that what happens in one 
time interval is independent of the happenings in another interval. Finally, we assume 
that l is constant over time. Given these assumptions, the number of occurrences of the 
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112  Probability Distributions

event in a time interval of length t follows the Poisson distribution with parameter m , 
where m is the product of l and t.

The Poisson probability mass function is
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for ,1, 2 . . . . . . . . .0

where e is a constant approximately equal to 2.71828 and m is the parameter of the 
Poisson distribution. Usually m is unknown and we must estimate it from the sample 
data. Before considering an example, we shall demonstrate in Table 5.3 the use of the 
probability mass function for the Poisson distribution to calculate the probabilities when 
m = 1 and m = 2. These probabilities are not diffi cult to calculate, particularly when m 
is an integer. There is also a recursive relation between the probability that X = x + 1 
and the probability that X = x that simplifi es the calculations:
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for x beginning at a value of 0. For example, for m = 2,

 Pr{X = 3} = (2/3) Pr{X = 2} = (2/3) 0.2707 = 0.1804

which is the value shown in Table 5.3.

Table 5.3 Calculation of poisson probabilities, Pr{X = x} = e-m mx/x!, for 
m = 1 and 2.

 m = 1 m = 2

x e−1 * 1x/x! = Pr{X = x} e-2 * 2x/x! = Pr{X = x}

0 0.3679 * 1/1 = 0.3679 0.1353 *  1/1 = 0.1353
1 0.3679 * 1/1 = 0.3679 0.1353 *  2/1 = 0.2707
2 0.3679 * 1/2 = 0.1839 0.1353 *  4/2 = 0.2707
3 0.3679 * 1/6 = 0.0613 0.1353 *  8/6 = 0.1804
4 0.3679 * 1/24 = 0.0153 0.1353 *  16/24 = 0.0902
5 0.3679 * 1/120 = 0.0031 0.1353 * 32/120 = 0.0361
6 0.3679 * 1/720 = 0.0005 0.1353 * 64/720 = 0.0120
7 0.3679 * 1/5040 = 0.0001 0.1353 * 128/5040 = 0.0034
8   0.1353 * 256/40320 = 0.0009
9   0.1353 * 512/362880 = 0.0002

  1.0000  0.9999

These probabilities are also found in Appendix Table B3, which gives the Poisson 
probabilities for values of m beginning at 0.2 and increasing in increments of 0.2 up to 
2.0, then in increments of 0.5 up to 7, and in increments of 1 up to 17. Computer software 
can provide the Poisson probabilities for other values of m (see Program Note 5.1 on 
the website). Note that the Poisson distribution is totally determined by specifying the 
value of its one parameter, m. The plots in Figure 5.4 show the shape of the Poisson 
probability mass and cumulative distribution functions with m = 2.

The shape of the Poisson probability mass function with m equal to 2 (the top plot in 
Figure 5.4) is similar to the binomial mass function for a sample of size 10 and p equal 
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to 0.2 just shown. The cdf (the bottom plot in Figure 5.4) has the same general shape 
as that shown in the preceding binomial example, but the shape is easier to see here, 
since there are more values for the X variable shown on the horizontal axis.

5.2.2   Mean and Variance of the Poisson Distribution

As just discussed, the mean is found by summing the products of each outcome by its 
probability of occurrence. For the Poisson distribution with parameter m = 1 (see Table 
5.3), the mean is

 

mean x X x
x

= Pr

. . . .

={ }

= ( ) + ( ) + ( ) + ( )
+

=
∑

0

0 0 3679 1 0 3679 2 0 1839 3 0 0613

44 0 0153 5 0 0031 6 0 0005 7 0 0001 1 0000. . . . . .( ) + ( ) + ( ) + ( ) =

The mean of the Poisson distribution is the same as m, which is also the parameter of the 
Poisson distribution. It turns out that the variance of the Poisson distribution is also m.

Figure 5.4 Poisson (m = 
2) probability mass and 
cumulative distribution 
functions.

The Poisson Distribution  113

Ch005-P369492.indd   113 11/4/2006   11:20:00 AM



114  Probability Distributions

5.2.3   Finding Poisson Probabilities

A famous chemist and statistician, W. S. Gosset, worked for the Guinness Brewery in 
Dublin at the turn of the 20th century. Because Gosset did not wish his competitor 
breweries to learn of the potential application of his work for a brewery, he published 
his research under the pseudonym of Student. As part of his work, he studied the dis-
tribution of yeast cells over 400 squares of a hemacytometer, an instrument for the 
counting of cells (Student 1907). One of the four data sets he obtained is shown in 
Table 5.4.

Table 5.4 Observed frequency of yeast cells in 400 squares.

 X

 0 1 2 3 4 5 6

Frequency 103 143 98 42 8 4 2
Proportion 0.258 0.358 0.245 0.105 0.020 0.010 0.005
Poisson Probability 0.267 0.352 0.233 0.103 0.034 0.009 0.002

Do these data follow a Poisson distribution? As we just said, the Poisson distribution is 
determined by the mean value that is unknown in this case. We can use the sample 
mean to estimate the population mean m. The sample mean is the sum of all the obser-
vations divided by the number of observations — in this case, 400. The sum of the 
number of cells is

 103(0) + 143(1) + 98(2) + 42(3) + 8(4) + 4(5) + 2(6) = 529.

The sample mean is then 529/400 = 1.3225. Thus, we can calculate the Poisson probabili-
ties using the value of 1.3225 for the mean. Since the value of 1.3225 for m is not in 
Appendix Table B3, we must use some other means of obtaining the probabilities. We 
can calculate them using the recursive relation just shown. We begin by fi nding the 
probability of squares with zero cells, e−1.3225, which is 0.2665. The other probabilities 
are found from this value. Computer packages can be used to calculate Poisson proba-
bilities (see Program Note 5.1 on the website). The results of calculation are shown in 
the third row of Table 5.4. Based on the visual agreement of the actual and theoretical 
proportions (from the Poisson), we cannot rule out the Poisson distribution as the dis-
tribution of the cell counts. The Poisson distribution agreed quite well for three of the 
four replications of the 400 cells that Gosset performed.

One reason for interest in the distribution of data is that knowledge of the distribution 
can be used in future occurrences of this situation. If future data do not follow the pre-
viously observed distribution, this can alert us to a change in the process for generating 
the data. It could also indicate, for example, that the blood cell counts of a patient under 
study differ from those expected in a healthy population or that there are more occur-
rences of some disease than was expected assuming that the disease occurrence follows 
a Poisson distribution with parameter m. If there are more cases of the disease, it may 
indicate that there is some common source of infection — for example, some exposure 
in the workplace or in the environment.

A method of visual inspection of whether or not the data could come from a Poisson 
distribution is the Poissonness plot, presented by Hoaglin (1980). The rationale for the 
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plot is based on the Poisson probability mass distribution formula. If the data could 
come from a Poisson distribution, then a plot of the sum of the natural logarithm of the 
frequency of x and the natural logarithm of x! against the value of x should be a straight 
line. Using a computer package (see Program Note 5.2 on the website) with the data 
in Table 5.4, a Poissonness plot is created, as shown in Figure 5.5.

Figure 5.5 Poissonness 
plot for Gosset’s data in 
Table 5.4.

Example 5.2

Use of the Poisson Distribution: In 1986, there were 18 cases of pertussis reported 
in Harris County, Texas, from its estimated 1986 population of 2,942,550. The 
reported national rate of pertussis was 1.2 cases per 100,000 population (Harris 
County Health Department 1990). Do the Harris County data appear to be consistent 
with the national rate?

The data are inconsistent if there are too many or too few cases of pertussis 
compared to the national rate. This concern about both too few as well as too many 
adds a complication lacking in the binomial example in which we were concerned 
only about too many occurrences. Our method of answering the question is as 
follows.

First calculate the pertussis rate in Harris County. If the rate is above the national 
rate, fi nd the probability of at least as many cases occurring as were observed. If the 
rate is below the national rate, fi nd the probability of the observed number of cases 
or fewer occurring. To account for both too few as well as too many in our calcula-
tions, we double the calculated probability. Is the resultant probability large? If it is 
large, there is no evidence that the data are inconsistent with the national rate. If it 
is small, it is unlikely that the data are consistent with the national rate.

The Poisson Distribution  115

The plot appears to be approximately a straight line, with the exception of a dip for 
x = 4. In Table 5.4, we see that the biggest discrepancy between the actual and theoreti-
cal proportions occurred when x = 4, confi rmed by the Poissonness plot.
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116  Probability Distributions

The rate of pertussis in Harris County was 0.61 cases per 100,000 population, 
less than the national rate. Therefore, we shall calculate the probability of 18 or fewer 
cases given the national rate of 1.2 cases per 100,000 population. The rate of 1.2 per 
100,000 is multiplied by 29.4255 (the Harris County population of 2,942,550 divided 
by 100,000) to obtain the Poisson parameter for Harris County of 35.31. This value 
exceeds those listed in Table B3. Therefore, we can either fi nd the probability of zero 
cases and use the recursive formula shown above or use the computer. Using a com-
puter package (see Program Note 5.1 on the website), the probability of 18 or fewer 
cases is found to be 0.001. Multiplying this value by 2 to account for the upper tail 
of the distribution gives a probability of 0.002, a very small value. It is therefore 
doubtful, since the probability is only 0.002, that the national rate of pertussis applies 
to Harris County.

This completes the introduction to the binomial and Poisson distributions. The fol-
lowing section introduces the normal probability distribution for continuous random 
variables.

5.3   The Normal Distribution
The normal distribution is also sometimes referred to as the Gaussian distribution after 
the German mathematician Carl Gauss (1777–1855). Gauss, perhaps the greatest math-
ematician who ever lived, demonstrated the importance of the normal distribution in 
describing errors in astronomical observations (published in 1809), and today it is the 
most widely used probability distribution in statistics. Recently, historians discovered 
that an American mine engineer, Adrian, used the similar distribution for random errors 
of measurements (published in 1808) (Stigler 1980). The normal distribution is so 
widely used because (1) it occurs naturally in many situations, (2) the sample means of 
many nonnormal distributions tend to follow it, and (3) it can serve as a good approxi-
mation to some nonnormal distributions.

5.3.1   Normal Probabilities

As we just mentioned, the probability distribution for a continuous random variable is 
usually expressed as a formula that can be used to fi nd the probability that the continu-
ous variable is within a specifi ed interval. This differs from the probability distribution 
of a discrete variable that gives the probability of each possible outcome.

One reason why an interval is used with a continuous variable instead of considering 
each possible outcome is that there is really no interest in each distinct outcome. For 
example, when someone expresses an interest in knowing the probability that a male 
45 to 54 years old weighs 160 pounds, exactly 160.000000000  .  .  .  pounds is not what 
is intended. What the person intends is related to the precision of the scale used, and 
the person may actually mean 159.5 to 160.5 pounds. With a less precise scale, 160 
pounds may mean a value between 155 and 165 pounds. Hence, the probability distribu-
tion of continuous random variables focuses on intervals rather than on exact values.

The probability density function (pdf) for a continuous random variable X is a 
formula that allows one to fi nd the probability of X being in an interval. Just as the 
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probability mass function for a discrete random variable could be graphed, the probabil-
ity density function can also be graphed. Its graph is a curve such that the area under 
the curve sums to one, and the area between two points, x1 and x2, is equal to the prob-
ability that the random variable X is between x1 and x2.

The normal probability density function is

 
f x e xx( ) = −∞ < < ∞− −( )1

2 2

22 2

πσ
μ σ ,

where m is the mean and s is the standard deviation of the normal distribution, and p 
is a constant approximately equal to 3.14159. The normal probability density function 
is bell-shaped, as can be seen from Figure 5.6. It shows the standard normal density 
function — that is, the normal pdf with a mean of zero and a standard deviation of one 
— over the range of −3.5 to plus 3.5. The area under the curve is one and the probability 
of X being between any two points is equal to the area under the curve between those 
two points.

Figure 5.7 shows the effect of increasing s from one to two on the normal pdf. The area 
under both of these curves again is one, and both curves are bell-shaped. The standard 
normal distribution has smaller variability, evidenced by more of the area being closer 
to zero, as it must, since its standard deviation is 50 percent of that of the other normal 
distribution. There is more area, or a greater probability of occurrence, under the second 
curve associated with values farther from the mean of zero than under the standard 
normal curve. The effect of increasing the standard deviation is to fl atten the curve of 
the pdf, with a concomitant increase in the probability of more extreme values of X.

In Figure 5.8, two additional normal probability density functions are presented to 
show the effect of changing the mean. Increasing the mean by 3 units has simply shifted 
the entire pdf curve 3 units to the right. Hence, changing the mean shifts the curve to 
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118  Probability Distributions

the right or left and changing the standard deviation increases or decreases the spread 
of the distribution.

5.3.2   Transforming to the Standard Normal Distribution

As can be seen from the normal pdf formula and the plots, there are two parameters, 
the mean and the standard deviation, that determine the location and spread of the 
normal curve. Hence, there are many normal distributions, just as there are many bino-
mial and Poisson distributions. However, it is not necessary to have many pages of 
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Figure 5.8 Normal pdf 
of N(0, 1), in black, and 
N(3, 1), in gray.
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normal tables for each different normal distribution because all the normal distributions 
can be transformed to the standard normal distribution. Thus, only one normal table is 
needed, not many different ones.

Consider data from a normal distribution with a mean of m and a standard deviation 
of s. We wish to transform these data to the standard normal distribution that has a 
mean of zero and a standard deviation of one. The transformation has two steps. The 
fi rst step is to subtract the mean, m , from all the observations. In symbols, let yi be equal 
to (xi − m). Then the mean of Y is my, which equals

 
μ μ μ μ μ

y
i ix

N

x N

N

N N

N
= − =

−
= − =∑∑ 0.

The second step is to divide yi by its standard deviation. Since we have subtracted a 
constant from the observations of X, the variance and standard deviation of Y is the 
same as that of X, as was shown in Chapter 3. That is, the standard deviation of Y is 
also s. In symbols, let zi be equal to yi/s. What are the mean and standard deviation of 
Z? The mean is still zero but the standard deviation of Z is one. This is due to the second 
property of the variance shown in Chapter 3 — namely, when all the observations are 
divided by a constant, the standard deviation is also divided by that constant. Therefore, 
the standard deviation of Z is found by dividing s, the standard deviation of Y, by the 
constant s. The value of this ratio is one.

Therefore, any variable, X, that follows a normal distribution with a mean of m and 
a standard deviation of s can be transformed to the standard normal distribution by 
subtracting m from all the observations and dividing all the observed deviations by s. 
The variable Z, defi ned as (X − m)/s, follows the standard normal distribution. A symbol 
for indicating that a variable follows a particular distribution or is “distributed as” is 
the asymptote, ∼. For example, Z ∼ N (0, 1) means that Z follows a normal distribution 
with a mean of zero and a standard deviation of one. The observed value of a variable 
from a standard normal distribution tells how many standard deviations that value is 
from its mean of zero.

5.3.3   Calculation of Normal Probabilities

The cumulative distribution function of the standard normal distribution, denoted by 
Φ(z), represents the probability that the standard normal variable Z is less than or equal 
to the value z — that is, Pr{Z ≤ z}. Table B4 presents the values of Φ(z) for values of z 
ranging from −3.79 to 3.79 in steps of 0.01. The table shows that the value of 0.9999 at 
z = 3.79, meaning that the probability of Z less than 3.79 is practically 1.0000. It also 
means that the area under the curve of pdf function shown in Figure 5.6 is 1.0000, a 
requirement for any probability distribution.

Figure 5.9 shows the cumulative distribution function for the standard normal dis-
tribution. The vertical axis gives the values of the probabilities corresponding to the 
values of z shown along the horizontal axis. The curve gradually increases from a prob-
ability of 0.0 for values of z around −3 to a probability of 0.5 when z is zero (as marked 
in Figure 5.9) and on to probabilities close to 1.0 for values of z of 3 or larger. We can 
calculate various probabilities associated with a normal distribution using its cdf without 
directly resorting to its pdf.
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Figure 5.9 Cdf of the 
standard normal 
distribution.

Example 5.3

Probability of Being Greater than a Value: Suppose we wish to fi nd the probability 
that an adult female will have a diastolic blood pressure value greater than 95  mmHg 
given that X, the diastolic blood pressure for adult females, follows the N(80, 10) 
distribution. Since the values in Table B4 are for variables that follow the N(0, 1) 
distribution, we fi rst must transform the value of 95 to its corresponding Z value. To 
do this, we subtract the mean of 80 and divide by the standard deviation of 10. The 
z value of 95  mmHg, therefore, is

z = − = =95 80

10

15

10
1 5. .

Thus, the value of the Z variable corresponding to 95  mmHg is 1.5, which means 
that the diastolic blood pressure of 95 is 1.5 standard deviations above its mean of 
80. We now want the probability that Z is greater than 1.5. Using Table B4, look for 
1.5 under the z heading and then go across the columns until reaching the .00 column. 
The probability of a standard normal variable being less than 1.5 is 0.9332. Thus, 
the probability of being greater than 1.5 is 0.0668 (= 1 − 0.9332).

Example 5.4

Calculation of the Value of the ith Percentile: Table B4 can be used to answer a 
slightly different question as well. Suppose that we wish to fi nd the 95th percentile 
of the diastolic blood pressure variable for adult females — that is, the value such 
that 95 percent of adult females had a diastolic blood pressure less than it. We look 
in the body of the table until we fi nd 0.9500. We fi nd the corresponding value in the 
z column, and transform that value to the N(80, 10) distribution. Examination of 
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Table B4 shows the value of 0.9495 when z is 1.64 and 0.9505 for a z of 1.65. There 
is no value of 0.9500 in the table. Since 0.9500 is exactly half way between 0.9495 
and 0.9505, we shall use the value of 1.645 for the corresponding z. We now must 
transform this value to the N(80, 10) distribution. This is easy to do since we know 
the relation between Z and X.

As Z = (X − m)/s, on multiplication of both sides of the equation by s, we have 
sZ = X − m. If we add m to both sides of the equation, we have sZ + m = X. Therefore, 
we must multiply the value of 1.645 by 10, the value of s, and add 80, the value 
of m , to it to fi nd the value of the 95th percentile. This value is 96.45 (= 16.45 
+ 80) mmHg.

This calculation can also be performed by computer packages (see Program Note 
5.3 on the website).

The percentiles of the standard normal distribution are used frequently, and, there-
fore, a shorthand notation for them has been developed. The ith percentile for the stan-
dard normal distribution is written as zi — for example, z0.95 is 1.645. From Table B4, 
we also see that z0.90 is approximately 1.28 and z0.975 is 1.96. By the symmetry of the 
normal distribution, we also know that z0.10 is −1.28, z0.05 is −1.645 and z0.025 is −1.96.

The percentiles in theory could also be obtained from the graph of the cdf for the 
standard normal shown in Figure 5.9. For example, if the 90th percentile was desired, 
fi nd the value of 0.90 on the vertical axis and draw a line parallel to the horizontal axis 
from it to the graph. Next, drop a line parallel to the vertical axis from that point down 
to the horizontal axis. The point where the line intersects the horizontal axis is the 90th 
percentile of the standard normal distribution.

Example 5.5

Probability Calculation for an Interval: Suppose that we wished to fi nd the proportion 
of women whose diastolic blood pressure was between 75 and 90  mmHg. The fi rst 
step in fi nding the proportion of women whose diastolic blood pressure is in this 
interval is to convert the values of 75 and 90  mmHg to the N(0, 1) distribution. The 
value of 75 is transformed to an N(0, 1) value by subtracting m and dividing by s — 
that is, (75 − 80)/10, which is −0.5, and 90 is converted to 1.0. We therefore must 
fi nd the area under the standard normal curve between −0.5 and 1.0. Figure 5.10 aids 
our understanding of what is wanted. It also provides us with an idea of the proba-
bility’s value. If the numerical value is not consistent with our idea of the value, 
perhaps we misused Appendix Table B4. From Figure 5.10 the area under the curve 
between z = −0.5 and z = 1.0 appears to be roughly 1/2 of the total area.

One way of fi nding the area between −0.5 and 1.0 is to fi nd the area under the 
curve less than or equal to 1.0 and to subtract from it the area under the curve less 
than or equal to −0.5. In symbols, this is

Pr{−0.5 < Z < 1.0} = Pr{Z < 1.0} − Pr{Z < −0.5}.
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122  Probability Distributions

5.3.4   The Normal Probability Plot

The normal probability plot provides a way of visually determining whether or not data 
might be normally distributed. This plot is based on the cdf of the standard normal dis-
tribution. Special graph paper, called normal probability paper, is used in the plotting of 
the points. The vertical axis of normal probability paper shows the values of the cdf of 
the standard normal. Table B4 shows the cdf values corresponding to z values of −3.79 
to 3.79 in steps of 0.01, and it is not diffi cult to discover that that the increase in the cdf’s 
value is not constant per a constant increase in z. It is more clearly shown in Figure 5.9. 
The vertical axis refl ects this with very small changes in values of the cdf initially, then 
larger changes in the cdf’s values in the middle of plot, and fi nally very small changes 
in the cdf’s value. Numbers along the horizontal axis are in their natural units.

If a variable, X, is normally distributed, the plot of its cdf against X should be a 
straight line on normal probability paper. If the plot is not a straight line, then it suggests 
that X is not normally distributed. Since we do not know the distribution of X, we 
approximate its cdf in the following fashion.

We fi rst sort the observed values of X from lowest to highest. Next we assign ranks 
to the observations from 1 for the lowest to n (the sample size) for the highest value. 
The ranks are divided by n and this gives an estimate of the cdf. This sample estimate 
is often called the empirical distribution function.

The points, determined by the values of the sample estimate of the cdf and the cor-
responding values of x, are plotted on normal probability paper. In practice, the ranks 
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From Table B4, we fi nd that the area under the standard normal pdf curve less 
than or equal to 1.0 is 0.8413. The probability of a value less than or equal to −0.5 
is 0.3085. Thus, the proportion of women whose diastolic blood pressure is between 
75 and 90  mmHg is 0.5328 (= 0.8413 − 0.3085). Computer packages can be used to 
perform this calculation (see Program Note 5.3 on the website).

Figure 5.10 Area under the standard normal curve between z = −0.5 and z = 1.0.
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divided by the sample size are not used as the estimate of the cdf. Instead, the transfor-
mation, (rank − 0.375)/(n + 0.25), is frequently used. One reason for this transformation 
is that the estimate of the cdf for the largest observation is now a value less than one, 
whereas the use of the ranks divided by n always results in a sample cdf value of one 
for the largest observation. A value less than one is desirable because it is highly unlikely 
that the selected sample actually contains the largest value in the population.

Example 5.6

We consider a small data set for vitamin A values from 33 boys shown in Table 5.5 and 
examine whether the data are normally distributed. An alternative to normal probability 
paper is the use of a computer (see Program Note 5.4 on the website). Applying the 
probability plot option in a computer package to vitamin A data, Figure 5.11 is produced. 
The straight line helps to discern whether or not the data deviate from the normal dis-
tribution. The points in the plot do not appear to fall along a straight line. Therefore, it 
is doubtful that the vitamin A variable follows a normal distribution, a conclusion that 
we had previously reached in the discussion of symmetry in Chapter 3.

Table 5.5 Values of vitamin A, their ranks, and transformed ranks, n = 33.

Vit. A  Trans.a Vit. A  Trans. Vit. A  Trans.
(IUs) Rank Rank (IUs) Rank Rank (IUs) Rank Rank

820 1 0.0188 3747 12 0.3496 6754 23 0.6805
964 2 0.0489 4248 13 0.3797 6761 24 0.7105
1379 3 0.0789 4288 14 0.4098 8034 25 0.7406
1459 4 0.1090 4315 15 0.4398 8516 26 0.7707
1704 5 0.1391 4450 16 0.4699 8631 27 0.8008
1826 6 0.1692 4535 17 0.5000 8675 28 0.8308
1921 7 0.1992 4876 18 0.5301 9490 29 0.8609
2246 8 0.2293 5242 19 0.5602 9710 30 0.8910
2284 9 0.2594 5703 20 0.5902 10451 31 0.9211
2671 10 0.2895 5874 21 0.6203 12493 32 0.9511
2687 11 0.3195 6202 22 0.6504 12812 33 0.9812

Source: From dietary records of 33 boys7

aTransformed by (rank − 0.375)/(n + 0.25)

Figure 5.11 Normal probability plot of vitamin A.
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124  Probability Distributions

Let us now examine data from a normal distribution and see what its normality 
probability plot looks like. The example in Figure 5.12 uses 200 observations generated 
from an N(80, 10) distribution. The plot looks like a straight line, but there are many 
points with the same normal scores. The points appear to fall mostly on a straight line 
as they should. The smallest observed value of X is slightly larger than expected if the 
data were perfectly normally distributed, but this deviation is relatively slight. Hence, 
based on this visual inspection, these data could come from a normal distribution.

It is diffi cult to determine visually whether or not data follow a normal distribution 
for small sample sizes unless the data deviate substantially from a normal distribution. 
As the sample size increases, one can have more confi dence in the visual 
determination.

5.4   The Central Limit Theorem
As was just mentioned, one of the main reasons for the widespread use of the normal 
distribution is that the sample means of many nonnormal distributions tend to follow 
the normal distribution as the sample size increases. The formal statement of this 
is called the central limit theorem. Basically, for random samples of size n from 
some distribution with mean m and standard deviation s, the distribution of x–, the 
sample mean, is approximately N(m , σ n ). This theorem applies for any distribution 
as long as m and s are defi ned. The approximation to normality improves as n 
increases.

The proof of this theorem is beyond the scope of this book and also unnecessary for 
our understanding. We shall, however, demonstrate that it holds for a very nonnormal 
distribution, the Poisson distribution with mean one.

Figure 5.12 Probability 
plot of 200 observations 
from N (80, 10).
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Example 5.7

As seen Figure 5.4, the Poisson distribution with a mean of 1 is very nonnormal in 
appearance. The following demonstration consists of drawing a large number of 
samples — say, 100 — from this distribution, calculating the mean for each sample, 
and examining the sampling distribution of the sample means. We shall do this for 
samples of size 5, 10, and 20. Figure 5.13 shows three boxplots for each of these 
sample sizes. All three means are around 1, and the variances of the means are 
decreasing as the sample size increases.

As was just stated, the mean of the means should be 1, and the standard deviation 
of the means is the standard deviation divided by the square root of the sample size. 
It was also stated that the distribution of means should approach a normal distribu-
tion when the sample size is large. Figure 5.14 examines the case for n = 20. The 
mean is 1.003, which is very close to 1. The standard deviation is 0.2058, which is 
close to 0.2236( = 1 20 ). The probability plot lines up around the straight line, 
suggesting that the distribution of the sample means does not differ substantially 
from normal distribution.

Figure 5.13 Boxplot of 100 sample means from Poisson (m = 1) for n = 5, 10, and 20.
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126  Probability Distributions

Besides showing that the central limit theorem holds for one very nonnormal distri-
butions, this demonstration also showed the effect of sample size on the estimate of the 
population mean. This example reinforces the idea that the mean from a very small 
sample may not be close to the population mean and does not warrant the use of the 
normal distribution. The idea of central limit theorem and sampling distribution plays 
a key role in referring from the sample to the population as will be discussed in sub-
sequent chapters.

5.5   Approximations to the Binomial and 
Poisson Distributions

As we just said, another reason for the use of the normal distribution is that, under 
certain conditions, it provides a good approximation to some other distributions — in 
particular the binomial and Poisson distributions. This was more important in the past 
when there was not such a widespread availability of computer packages for calculating 
binomial and Poisson probabilities for parameter values far exceeding those shown in 
tables in most textbooks. However, it is still important today as computer packages have 
limitations in their ability to calculate binomial probabilities for large sample sizes or 
for extremely large values of the Poisson parameter. In the following sections, we show 
the use of the normal distribution as an approximation to the binomial and Poisson 
distributions.

5.5.1   Normal Approximation to the Binomial Distribution

In the plots of the binomial probability mass functions, we saw that as the binomial 
proportion approached 0.5, the plot began to look like the normal distribution (see Figure 
5.3). This was true for sample sizes even as small as 10. Therefore, it is not surprising 
that the normal distribution can sometimes serve as a good approximation to the bino-

Figure 5.14 Probability plot of 100 means of size 20 from Poisson (m = 1).
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mial distribution. Figure 5.15 demonstrates the effect of n on a binomial distribution, 
suggesting why we used the modifi er sometimes in the preceding sentence.

Both plots in Figure 5.15 are based on p = 0.2. The fi rst plot for n = 10 is skewed, 
and the normal approximation is not warranted. But the second plot for n = 60 is sym-
metric, and the normal distribution should provide a reasonable approximation here.

The central limit theorem provides a rationale for why the normal distribution can 
provide a good approximation to the binomial. In the binomial setting, there are two 
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128  Probability Distributions

outcomes — for example, disease and no disease. Let us assign the numbers 1 and 0 to 
the outcomes of disease and no disease, respectively. The sum of these numbers over 
the entire sample is the number of diseased persons in the sample. The mean, then, is 
simply the number of diseased sample persons divided by the sample size. And accord-
ing to the central limit theorem, the sample mean should approximately follow a normal 
distribution as n increases. But if the sum of values divided by a constant approximately 
follows a normal distribution, the sum of the values itself also approximately follows a 
normal distribution. The sum of the values in this case is the binomial variable, and, 
hence, it also approximately follows the normal distribution.

Unfortunately, there is not a consensus as to when the normal approximation can be 
used — that is, when n is large enough for the central limit theorem to apply. This issue 
has been examined in a number of recent articles (Blyth and Still 1983; Samuels and 
Lu 1992; Schader and Schmid 1989). Based on work by Samuels and Lu (1992) and on 
some calculations we performed, Table 5.6 shows our recommendations for the size of 
the sample required as a function of p for the normal distribution to serve as a good 
approximation to the binomial distribution. Use of these sample sizes guarantees that 
the maximum difference between the binomial probability and its normal approximation 
is less than or equal to 0.0060 and that the average difference is less than 0.0017.

The mean and variance to be used in the normal approximation to the binomial are 
the mean and variance of the binomial, np and np (1 − p), respectively. Since we are 
using a continuous distribution to approximate a discrete distribution, we have to take 
this into account. We do this by using an interval to represent the integer. For example, 
the interval of 5.5 to 6.5 would be used with the continuous variable in place of the 
discrete variable value of 6. This adjustment is called the correction for continuity.

Table 5.6 Sample size required for the normal distribution to serve as a good approximation to the 
binomial distribution as a function of the binomial proportion p .

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
n 440 180 100 60 43 32 23 15 11 10
Differencea 0.0041 0.0048 0.0054 0.0059 0.0059 0.0057 0.0059 0.0060 0.0049 0.0027
Mean diff.b 0.0010 0.0012 0.0013 0.0016 0.0016 0.0016 0.0016 0.0017 0.0016 0.0013
aMaximum difference between binomial probability and normal approximation
bMean of absolute value of difference between binomial probability and normal approximation for 
all nonzero probabilities

Example 5.8

We use the normal approximation to the binomial for the c-section deliveries example 
in Example 5.1. We wanted to fi nd the probability of 22 or more c-section deliveries 
in a sample of 62 deliveries. The values of the binomial mean and variance, assuming 
that p is 0.235, are 14.57 (= 62  *  0.235) and 11.146 (= 62  *  0.235  *  0.765), respec-
tively. The standard deviation of the binomial is then 3.339. Finding the probability 
of 22 or more c-sections for the discrete binomial variable is approximately equiva-
lent to fi nding the probability that a normal variable with a mean of 14.57 and a 
standard deviation of 3.339 is greater than 21.5.

Before using the normal approximation, we must fi rst check to see if the sample 
size of 62 is large enough. From Table 5.6, we see that since the assumed value of p 

Ch005-P369492.indd   128 11/4/2006   11:20:02 AM



is between 0.20 and 0.25, our sample size is large enough. Therefore, it is okay to 
use the normal approximation to the binomial.

To fi nd the probability of being greater than 21.5, we convert 21.5 to a standard 
normal value by subtracting the mean and dividing by the standard deviation. The 
corresponding z value is 2.075 (= [21.5 − 14.57]/3.339). Looking in Table B4, we fi nd 
the probability of a standard normal variable being less than 2.075 is about 0.9810. 
Subtracting this value from one gives the value of 0.0190, very close to the exact 
binomial value of 0.0224 found in Example 5.1.

Example 5.9

According to data reported in Table 65 of Health, United States, 1991 (NCHS 1992), 
14.0% of high school seniors admitted that they used marijuana during the 30 days 
previous to a survey conducted in 1990. If this percentage applies to all seniors in 
high school, what is the probability that in a survey of 140 seniors, the number 
reporting use of marijuana will be between 15 and 25? We want to use the normal 
approximation to the binomial, but we must fi rst check our sample size with Table 
5.7. Since a sample of size 100 is required for a binomial proportion of 0.15, our 
sample of 140 for an assumed binomial proportion of 0.14 is large enough to use the 
normal approximation.

The mean of the binomial is 19.6 and the variance is 16.856 (= 140  *  0.14  *  0.86). 
Thus, the standard deviation is 4.106. These values are used in converting the values 
of 15 and 25 to z scores. Taking the continuity correction into account means that 
interval is really from 14.5 to 25.5.

We convert 14.5 and 25.5 to z scores by subtracting the mean of 19.6 and dividing 
by the standard deviation of 4.106. The z scores are −1.24 (= [14.5 − 19.6]/4.106) and 
1.44(= [25.5 − 19.6]/4.106). To fi nd the probability of being between −1.24 and 1.44, 
we will fi rst fi nd the probability of being less than 1.44. From that, we will subtract 
the probability of being less than −1.24. This subtraction yields the probability of 
being in the interval.

These probabilities are found from Table B4 in the following manner. First, we 
read down the z column until we fi nd the value of 1.44. We go across to the .00 
column and read the value of 0.9251; this is the probability of a standard normal 
value being less than 1.44. The probability of being less than −1.24 is 0.1075. Sub-
tracting 0.1075 from 0.9251 yields 0.8176. This is the probability that, out of a sample 
of 140, between 15 to 25 high school seniors would admit to using marijuana during 
the 30 days previous to the question being asked.

5.5.2   Normal Approximation to the Poisson Distribution

Since the Poisson tables do not show every possible value of the parameter m , and since 
the tables and computer packages do not provide probabilities for extremely large values 
of m , it is useful to be able to approximate the Poisson distribution. As can be seen from 
the preceding plots, the Poisson distribution does not look like a normal distribution for 
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130  Probability Distributions

small values of m. However, as the two plots in Figure 5.16 show, the Poisson does 
resemble the normal distribution for large values of m. The fi rst plot shows the probabil-
ity mass function for the Poisson with a mean of 10 and the second plot shows the 
probability mass function for the Poisson distribution with a mean of 20.

As can be seen from these plots, the normal distribution should be a reasonable 
approximation to the Poisson distribution for values of m greater than 10. The normal 
approximation to the Poisson uses the mean and variance from the Poisson distribution 
for the normal mean and variance.
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Conclusion
Three of the more useful probability distributions — the binomial, the Poisson, and the 
normal — were introduced in this chapter. Examples of their use in describing data 
were provided. The examples also suggested that the distributions could be used to 
examine whether or not the data came from a particular population or some other popu-
lation. This use will be explored in more depth in subsequent chapters on interval esti-
mation and hypothesis testing.

EXERCISES

5.1 According to data from NHANES II (NCHS 1992), 26.8 percent of persons 
20–74 years of age had high serum cholesterol values (greater than or equal to 
240  mg/dL).
a. In a sample of 20 persons ages 20–74, what is the probability that 8 or more 

persons had high serum cholesterol? Use Table B2 to approximate this value 
fi rst and then provide a more accurate answer.

b. How many persons out of the 20 would be required to have high cholesterol 
before you would think that the population from which your sample was 
drawn differs from the U.S. population of persons ages 20–74?

c. In a sample of 200 persons ages 20–74, what is the probability that 80 or 
more persons had high serum cholesterol?

5.2 Based on reports from state health departments, there were 10.33 cases of 
tuberculosis per 100,000 population in the United States in 1990 (NCHS 1992). 
What is the probability of a health department, in a county of 50,000, observing 
10 or more cases in 1990 if the U.S. rate held in the county? What is the proba-
bility of fewer than 3 cases if the U.S. rate held in the county?

5.3 Assume that systolic blood pressure for 5-year-old boys is normally distributed 
with a mean of 94  mmHg and a standard deviation of 11  mmHg. What is the 
probability of a 5-year-old boy having a blood pressure less than 70  mmHg? 
What is the probability that the blood pressure of a 5-year-old boy will be 
between 80 and 100  mmHg?

Example 5.10

We use the preceding pertussis example to demonstrate the normal approximation 
to the Poisson distribution. In the pertussis example, we wanted to fi nd the probabil-
ity of 18 or fewer cases of pertussis, given that the mean of the Poisson distribution 
was 35.31. This value, 35.31, will be used for the mean of the normal and its square 
root, 5.942, for the standard deviation of the normal. Since we are using a continuous 
distribution to approximate a discrete one, we must use the continuity correction. 
Therefore, we want to fi nd the probability of values less than 18.5. To do this, we 
convert 18.5 to a z value by subtracting the mean of 35.31 and dividing by the stan-
dard deviation of 5.942. The z value is −2.829. The probability of a Z variable being 
less than −2.829 or −2.83 is found from Table B4 to be 0.0023, close to the exact 
value of 0.001 given above.
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132  Probability Distributions

5.4 Less than 10 percet of the U.S. population is hospitalized in a typical year. 
However, the per capita hospital expenditure in the United States is generally 
large — for example, in 1990, it was approximately $975. Do you think that the 
expenditure for hospital care (at the person level) follows a normal distribution? 
Explain your answer.

5.5 In Harris County, Texas, in 1986, there were 173 cases of Hepatitis A in a popu-
lation of 2,942,550 (HCHD 1990). The corresponding rate for the United States 
was 10.0 per 100,000 population. What is the probability of a rate as low as or 
lower than the Harris County rate if the U.S. rate held in Harris County?

5.6 Approximately 6.5 percent of women ages 30–49 were iron defi cient based on 
data from NHANES II (LSRO 1989). In a sample of 30 women ages 30–49, 
6 were found to be iron defi cient. Is this result so extreme that you would 
want to investigate why the percentage is so high?

5.7 Based on data from the Hispanic Health and Nutrition Examination Survey 
(HHANES) (LSRO 1989), the mean serum cholesterol for Mexican-American 
males ages 20 to 74 was 203 mg/dL. The standard deviation was approximately 
44  mg/dL. Assume that serum cholesterol follows a normal distribution. What 
is the probability that a Mexican-American male in the 20–74 age range has a 
serum cholesterol value greater than 240  mg/dL?

5.8 In 1988, 71% of 15- to 44-year-old U.S. women who have ever been married 
have used some form of contraception (NCHS 1992). What is the probability 
that, in a sample of 200 women in these childbearing years, fewer than 120 of 
them have used some form of contraception?

5.9 In ecology, the frequency distribution of the number of plants of a particular 
species in a square area is of interest. Skellam (1952) presented data on the 
number of plants of Plantago major present in squares of 100 square centimeters 
laid down in grassland. There were 400 squares and the numbers of plants in 
the squares are as follows:

Plants per Square 0 1 2 3 4 5 6 7

Frequency 235 81 43 18 9 6 4 4

 Create a Poissonness plot to examine whether or not these data follow the 
Poisson distribution.

5.10 The Bruce treadmill test is used to assess exercise capacity in children and 
adults. Cumming, Everatt, and Hastman (1978) studied the distribution of the 
Bruce treadmill test endurance times in normal children. The mean endurance 
time for a sample of 36 girls 4–5 years old was 9.5 minutes with a standard 
deviation of 1.86 minutes. If we assume that these are the true population mean 
and standard deviation, and if we also assume that the endurance times follow 
a normal distribution, what is the probability of observing a 4-year-old girl with 
an endurance time of less than 7 minutes? The 36 values shown here are based 
on summary statistics from the research by Cumming et al. Do you believe that 
these data are normally distributed? Explain your answer.

Hypothetical Endurance Times in Minutes for 36 Girls 4 to 5 Years of Age

 5.3 6.5 7.0 7.2 7.5 8.0 8.0 8.0 8.0 8.2 8.5 8.5
 8.8 8.8 8.9 9.0 9.0 9.0 9.0 9.5 9.8 9.8 10.0 10.0
10.6 10.8 11.0 11.2 11.2 11.3 11.5 11.5 12.2 12.4 12.7 13.3
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5.11 Seventy-nine fi refi ghters were exposed to burning polyvinyl chloride (PVC) in 
a warehouse fi re in Plainfi eld, New Jersey, on March 20, 1985. A study was 
conducted in an attempt to determine whether or not there were short- and 
long-term respiratory effects of the PVC (Markowitz 1989). At the long-term 
follow-up visit at 22 months after the exposure, 64 fi refi ghters who had been 
exposed during the fi re and 22 fi refi ghters who were not exposed reported on 
the presence of various respiratory conditions. Eleven of the PVC exposed 
fi refi ghters had moderate to severe shortness of breath compared to only 1 of 
the nonexposed fi refi ghters.

What is the probability of fi nding 11 or more of the 64 exposed fi refi ghters 
reporting moderate to severe shortness of breath if the rate of moderate to severe 
shortness of breath is 1 case per 22 persons? What are two possible confounding 
variables in this study that could affect the interpretation of the results?
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