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All of the statistical methods we have discussed so far are based on the assumption that 
the data were obtained by simple random sampling with replacement. As we discussed 
in Chapter 6, simple random sampling can be very expensive, if not infeasible, to imple-
ment in community surveys. Consequently, survey statisticians often use alternative 
sample selection methods that use such design features as stratifi cation, clustering, and 
unequal selection probabilities. Some of these features were briefl y discussed in Chapter 
6. Sample designs that use some of these more advanced design features are referred as 
complex sample designs. These complex designs require adjustments in the methods of 
analysis to account for the differences from simple random sampling. Once these adjust-
ments are made, all the analytic methods discussed in this book can be used with 
complex survey data. We introduce several different ways of making these adjustments 
in this chapter, with a focus on two specifi c topics: the use of sample weights and the 
calculation of estimated variances of parameter estimates based on complex sample 
designs.

Our treatment of the material in this chapter differs from the treatment in the other 
chapters in that we provide few formulas here. Instead, we attempt to provide the reader 
with a feel for the different approaches. We also provide some examples pointing out 
how ignoring the sample design in the analysis can yield very misleading conclusions. 
We follow this nonformulaic path because of the mathematical complexity of the pro-
cedures. In addition, we do not go into detail about procedures for addressing two 
important problems in the analysis of survey data — nonresponse and missing data. 
There are several approaches for dealing with these problems (Levy and Lemeshow 
1999; Little and Rubin 2002), but they all make assumptions about the data that are 
diffi cult to check. We cannot stress too highly the importance of reducing nonresponse 
in surveys. Even after reading this chapter, we think the reader will need to work with 
a survey statistician when carrying out the analysis of survey data.

15.1   Introduction to Design-Based Inference
There are two general approaches for dealing with the analytic complexities in survey 
data and these can be loosely grouped under the headings of “design-based” and “model-
based.” We are presenting only the design-based approach because it is the standard 
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422  Analysis of Survey Data

way of analyzing complex surveys, although the model-based approach also has many 
supporters. Several sources discuss the model-based approach (Korn and Graubard 
1999; Lee and Forthofer 2006; Lohr 1999).

The design-based approach requires that the sample design be taken into account in 
the calculation of estimates of parameters and their variances. As we just mentioned, a 
key feature of the complex sample design is the sample weight, which is based on the 
probability of selection of the units in the sample. The calculation of the estimated vari-
ance for a parameter estimate from complex survey data usually cannot be done through 
applying a simple formula. The following special procedures are used.

15.2   Components of Design-Based Analysis
As just mentioned, most community surveys utilize complex sample designs to facilitate 
the conduct of the surveys. As a result of using stratifi cation and clustering, the selection 
probabilities of units are unequal. In some surveys, unequal selection probabilities are 
used intentionally to achieve certain survey objectives. For example, the elderly, chil-
dren, and women of childbearing ages are often oversampled to obtain a suffi cient 
number of people in those categories for detailed analysis.

15.2.1   Sample Weights

The weight is used to account for differential representation of sample observations. 
The weight is defi ned as the inverse of selection probability for each observation. Let 
us explore the concept of the sample weight in the simple random sampling situation. 
Suppose that an SRS of n = 100 households was selected from a population of N = 1000 
households to estimate the total medical expenditure for a year for the population. The 
selection probability of each sample observation is n/N = 0.1, and the sample weight is 
therefore 10 (= N/n). The sample weights add up to N. If the average annual medical 
expenditure for the sample (y–) was found to be $2000, then the estimated total medical 
expenditure for the population would be N y– = $2,000,000. Another way of writing the 
estimate is
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or the weighted total of sample observations. Since the weight is the same for all sample 
observations in simple random sampling, we don’t need to weight each observation 
separately.

The situation is slightly different with a disproportionate stratifi ed random sample 
design. Suppose the population of 1000 households consists of two strata: 200 (N1) 
households with at least one senior citizen and 800 (N2) households without any seniors. 
Suppose further that 50 households were randomly selected from each stratum. The 
selection probability in the fi rst stratum is 50/200 and the weight is 4 (= N1/n1). In the 
second stratum the selection probability is 50/800 and the weight is 16. If the average 
medical expenditure for the fi rst and second stratum were found to be $5000 (y–1) and 
$1250 (y–2), respectively, then the estimated total medical expenditure for the population 
would be $2,000,000 (= N1y–1 + N2 y–2= 200{1250} + 800{5000}). The following relation-
ship shows the role of the weight in estimation:
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Although we have used SRS and stratifi ed sample designs to introduce the sample 
weights, the same concept extends to more complex designs. When each observation in 
the sample has a different weight (wi), the estimates for the population can be obtained 
using the following general estimator:

 
population estimate = ∑w yi i .

This procedure applies to all sample designs.

In survey analysis, the weight is often modifi ed further by poststratifi cation adjust-
ments discussed in the following sections.

15.2.2   Poststratifi cation

In the health fi eld, many of the variables of interest vary by, for example, a person’s age, 
sex, and race. If we knew these variables before we carried out the survey, we could 
use them to create a stratifi ed design that would take these variables into account. 
Unfortunately, we often don’t know the values of these variables before the survey, and 
this fact prevents us from using a stratifi ed sample design.

However, we still wish to take these variables into account in the analysis. We do 
this by adjusting the sample distributions so that they match their population distribu-
tions for these variables. We accomplish this matching by using a technique called 
poststratifi cation that adjusts the sample weights after (post) the sample data have been 
collected.

The following example shows how poststratifi cation adjustment is created for the 
different categories.

Example 15.1

A telephone survey was conducted in a community to estimate the average amount 
spent on food per household in a week. Telephone surveys are popular because they 
are quick and easy to perform. Unfortunately, they exclude the small percentage of 
the households without a landline telephone, and this exclusion could introduce some 
small degree of bias in the results. With the increasing use of cell phones, the poten-
tial for bias in telephone surveys is increasing unless cell phone numbers are also 
included. Given the goal of this survey, one desirable stratifi cation variable would 
be household size because larger households likely spend more than smaller house-
holds. Since information on household size was not readily available before the 
survey was conducted, we could not stratify on this variable in the survey design.

The survey failed to obtain responses from 12 percent of the households. It was 
thought that these nonrespondents were more likely to be living in smaller house-
holds, and this idea is supported by the data shown in Table 15.1. These data show 
the distribution of sample households by household size and the corresponding dis-
tribution from a previous study involving household size in the community. Smaller 
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424  Analysis of Survey Data

Multiplying the sample weight by the poststratifi cation adjustment factors causes the 
weighted sample distribution to match the population distribution for the variables used 
in the poststratifi cation.

15.2.3   The Design Effect

In Chapter 6 we demonstrated in one example that a stratifi ed sample could provide a 
more precise — have smaller sampling variance — estimator for the sample mean than 
a simple random sample of the same sample size. In this section we provide a measure, 
the design effect, for comparing a sample design to a simple random sample design with 
replacement. To introduce this idea, we will begin by comparing simple random sam-
pling without replacement to simple random sampling with replacement.

In Chapters 7 and 8, we used s2/n as the estimator for the variance of the sample 
mean ( x–) and s n  as the estimator for the standard error for data resulting from 

households are indeed underrepresented in the sample and this suggests the average 
food expenditure would be overestimated unless we make an adjustment for house-
hold size. Table 15.1 shows the procedure of poststratifi cation adjustment.

The postratifi cation adjustment for single-person households is to multiply the 
number of single-person households by 1.138, refl ecting that this category of house-
holds is underrepresented by 14 percent. This adjustment is equivalent to multiplying 
the sample weights by the same factor. The adjusted number of households for this 
category is then 71.7 (= 63{1.138}); for the rest of household size categories the 
adjusted numbers are 98.3, 51.7, 48.9, and 33.4. The distribution of these adjusted 
numbers of household by household size now matches the distribution in the popula-
tion. The average food expenditure based on these adjusted numbers of households 
is $67.00, compared with the unadjusted average of $71.08. As expected, the adjusted 
average is lower than the unadjusted estimate.

We have not addressed the nonresponders directly through the poststratifi cation 
adjustment. Given that the nonresponse rate was only 12 percent, it is unlikely that 
the average food expenditure estimate would change much if the nonresponders were 
included. However, it would be good to do more follow-up with a sample of the 
nonresponders in an effort to determine if they differed drastically from the 
responders.

Table 15.1 Poststratifi cation adjustments by household size for a telephone survey.

Number of Number of    Average
Persons in Households Sample Population Adjustment Food
Household in Sample Distribution Distribution Weighta Expenditure

1 63 0.2072 0.2358 1.13803 $38
2 81 0.2664 0.3234 1.21396 52
3 63 0.2072 0.1700 0.82046 78
4 52 0.1711 0.1608 0.93980 98
5+ 45 0.1480 0.1100 0.74324 111
aPopulation distribution divided by sample distribution
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simple random sampling with replacement. When simple random sampling without 
replacement is used, the formula for the estimated variance is
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(15.1)

The term (1 − n/N), called the fi nite population correction (FPC), adjusts the formula 
to take into account that we are no longer sampling from an infi nite population. Use of 
this term decreases the magnitude of the variance estimate. For samples from large 
populations, the FPC is approximately one, and it can be ignored in these cases.

The ratio of the sampling variance of SRSWOR to that of SRSWR is the FPC, and 
it refl ects the effect of using SRSWOR compared to using SRSWR. This ratio comparing 
the variance of some statistic from any particular sample design to that of SRSWR is 
called the design effect for that statistic. It is used to assess the loss or gain in precision 
of sample estimates from the sample design used. A design effect less than one indicates 
that fewer observations are needed to achieve the same precision as SRSWR whereas a 
design effect greater than one implies that more observations may be needed to yield 
the same precision. Extending this concept to sample size, the effective sample size of 
a design is the size of a simple random sample with replacement that would have pro-
duced the same estimated sample variance for the estimator under consideration. The 
effective sample size is the actual sample size of the design being used divided by the 
design effect.

The design effect can be examined theoretically for some simple sample designs. As 
was just mentioned, we pointed out in Chapter 6 that stratifi ed random sampling often 
produces smaller sampling variance than SRS. Cluster sampling will lead to a greater 
sampling variability when the sampling units are similar within clusters. The intraclass 
correlation coeffi cient (ICC) is used to assess the variability within the clusters. The 
ICC is the Pearson correlation coeffi cient based on all possible pairs of observations 
within a cluster.

The design effect of single-stage cluster sample design with equal size clusters is

 1 + (M − 1)ICC

where M is the size of each cluster. Given this design, the ICC ranges from −1/(M − 1) 
to 1. When ICC is positive, the design effect will be greater than one. If the clusters 
were formed at random, then ICC = 0; when all the units within each cluster have the 
same value, then ICC = 1 and the design effect is the same as the size of the cluster. 
Most clusters used in community surveys consist of houses in the same area, and these 
generally yield positive ICCs for many survey variables such as socioeconomic and 
some demographic characteristics.

Since the determination of the design effect requires that we have an estimate of the 
sample variance for a given design, this calculation is usually not a simple task for a 
complex sample design. The complexity of the design often means that we cannot use 
the variance estimating formulas presented in previous chapters; rather, special tech-
niques that utilize unfamiliar strategies are required. The next section presents several 
strategies for estimating sampling variance for statistics from complex sample 
designs.
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426  Analysis of Survey Data

15.3   Strategies for Variance Estimation
The estimation of the sampling variance of a survey statistic is complicated not only by 
the complexity of the sample design but also by the form of the statistic. Even with an 
SRS design, the variance for some sample statistics requires nonstandard estimating 
techniques. For example, the sampling variance of sample median was not covered in 
previous chapters. Moreover, the variance estimator for a weighted statistic is compli-
cated because both the numerator and denominator are random variables. We will 
present several techniques for estimating sampling variances: (1) from complex samples 
and (2) for nonlinear statistics. These techniques include replicated sampling, balanced 
repeated replication, jackknife repeated replication, and the linearization method (Taylor 
series approximation).

15.3.1   Replicated Sampling: A General Method

The replicated sampling method requires the selection of a set of subsamples from the 
population with each subsample being drawn independently following the same sample 
selection design. Then an estimate is calculated for each subsample, and the sampling 
variance of the overall estimate based on all the subsamples can be estimated from the 
variability of these independent subsample estimates. The repeated systematic sampling 
discussed in Chapter 6 represents this strategy.

The standard error of the mean (u–) of t replicate estimates, u1, u2,  .  .  .  , u1 of the 
parameter U can be estimated by
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(15.2)

This estimator can be applied to any sample statistic obtained from independent repli-
cates for any sample design.

In applying this estimator, ten replicates are recommended by Deming (1960) and a 
minimum of four by Sudman (1976) for descriptive statistics. An approximate estimate 
of the standard error can be calculated by dividing the range in the replicate estimates 
by the number of replicates when the number of replicates is between 3 and 13 (Kish 
1965). However, because this estimator with t replicates is based on t − 1 degrees of 
freedom, a larger number of replicates may be needed for analytic studies, perhaps 20 
to 30 (Kalton 1983).

Example 15.2

In this artifi cial example, we demonstrate the use of replicated sampling for the 
estimation of the sample variance of a statistic. In this case, we are going to estimate 
the population proportion of male births and the sample variance of this statistic 
based on replicated samples. Instead of collecting actual data, we will use the random 
digits in Table B1 to create our replicated samples. In our simulation process, we are 
going to assume that the population proportion of male births is 0.5. We will take 
10 replicated samples of size 40 using the fi rst eight 5-digit-columns of lines 1 
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The chief advantage of replicated sampling is the ease in estimation of the standard 
errors for complex sample designs. This strategy is especially useful in systematic 
sampling, since there is no way to estimate the standard error of an estimator from a 
systematic sample with only one replicate. Replicated systematic sampling can easily 
be implemented by randomly selecting multiple starting points. In applying Equation 
(15.2), the sample statistic for the full sample is generally used instead of the mean of 
replicate estimates when sample weights are present.

However, replicated sampling is diffi cult to implement in multistage cluster sampling 
designs and is seldom used in large-scale surveys. Instead, the replicated sampling idea 
can be applied in the data analysis stage where pseudo-replication methods for variance 
estimation are used. The next two sections present two such methods.

15.3.2   Balanced Repeated Replication

The balanced repeated replication (BRR) method represents an application of the repli-
cated sample idea to a paired selection design in which two primary sampling units 
(PSU) are sampled from each stratum. The paired selection design is often used to 
simplify the calculation of variance within a large number of strata. The variance 

through 10. Table 15.2 shows the number and proportion of boys with estimates of 
the standard error by three different methods.

For the full sample of 400 — combining the data from the 10 separate samples 
— the proportion of boys is 0.512 and its standard error is 0.025 based on simple 
random sampling. The standard error estimated from the 10 replicate estimates using 
Equation (15.2) is 0.022. An approximate estimate can also be obtained by taking 
the range in replicate estimates divided by the number of replicates. This value is 
0.025 ([0.650 − 0.400]/10). Of course replicated sampling is not needed for estimat-
ing standard errors for a simple random sample design. But this strategy also works 
for complex sample designs.

Table 15.2 Estimation of standard errors for the proportion of boys from 10 replicated samples of 
size 40.

Replicate n Number of Boys Proportion of Boys Standard Error

Full sample 400 205 0.512 0.025a

 1 40 21 0.525
 2 40 16 0.400
 3 40 21 0.525
 4 40 20 0.500
 5 40 20 0.500
 6 40 17 0.425
 7 40 21 0.525
 8 40 26 0.650
 9 40 24 0.600
10 40 19 0.475 0.022b

   (0.650 − 0.400)/10     =     0.025c

aBased on SRS
bBased on Equation (15.2)
cBased on the range in replicate proportions divided by the number of replicates
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428  Analysis of Survey Data

between two units within a stratum is one-half of the squared difference between the 
units. McCarthy (1966) originally proposed the BRR method for the National Center 
for Health Statistics for analyzing the National Health Examination Survey that used a 
paired selection design.

To apply the replicated sampling idea, half-sample replicates are created by taking 
one PSU from each stratum. From the paired selection design, we can create only two 
half-sample replicates. Since the estimate of standard error based on two replicates is 
unstable, we repeat the process of forming half-sample replicates in such a way that 
replicates are independent of each other (Plackett and Burman 1946).

Replicate estimates, u1, u2,  .  .  .  , ut, for a sample statistic are calculated by doubling 
the sample weights, since each replicate contains one-half of the total observations. Then 
the standard error of the statistic (u–) for the full sample can be calculated by
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Since this process involves so much manipulation of the data, it is usually necessary to 
use specialized computer software created to carry out the BRR approach.

15.3.3   Jackknife Repeated Replication

Another replication-based procedure is called the jackknife repeated replication method 
(JRR). This procedure creates pseudo-replicates by deleting one unit from the sample, 
then calculating the sample statistic of interest. That unit is put back into the sample, 
another unit is deleted and the statistic is calculated, and so on. The estimate of the 
variance is then based on the variation in these sample statistics. The term jackknife 
may be used because this procedure can be used for a variety of purposes. The idea of 
jackknifi ng was introduced by Quenouille in 1949 in the estimation of bias for a sample 
estimator. Frankel (1971) fi rst applied the jackknife procedure to the computation of 
sampling variance in complex surveys, using it in a manner similar to the BRR method. 
The following example illustrates the principle of jackknifi ng.

Example 15.3

We consider a small data set — the ages of the fi rst 10 patients in DIG40 shown in 
Table 3.1. Assuming that these data are from a simple random sample, the sample 
mean is 58.2 and the sample median is 59.5. If we ignore the FPC, the estimated 
standard error of the sample mean is 4.27. These statistics are shown in Table 15.3 
along with the 10 observations. We next estimate the standard error of the sample 
mean by the jackknife procedure.

We create a jackknife replicate by deleting the fi rst observation (age 55) and cal-
culate the mean for the replicate, which gives 58.56, as shown in the table. By deleting 
the second observation (age 78) we get the second jackknife replicate estimate of 56. 
Repeating the same procedure we have 10 replicate estimates, y– (1), y

–
(2),  .  .  .  , y

–
(10). Let 

the mean of the replicate estimates be y y ni=( )( )∑ , and this value is 58.2,  
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For a complex sample design, the JRR method is generally applied at the PSU level. 
The JRR method is not restricted to a paired selection design but is applicable to any 
number of PSUs per stratum. Let us consider a situation with L strata. If uhi is the esti-
mate of the parameter U from the hth stratum and ith replicate, nh is the number of 
sampled PSUs in the hth stratum, and rh be the number of replicates formed in the hth 
stratum, then the standard error is estimated by
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If each of the PSUs in the hth stratum is removed to form a replicate, rh is the same 
as nh in each stratum, but the formation of nh replicates in the hth stratum is not required. 
When the number of strata is large and nh is two or more, we can reduce the computa-
tional burden by using only one replicate in each stratum. However, a suffi cient number 

which is the same as the sample mean. The standard error can be estimated by

n y y ni−( ) −( )( )1
2Σ ,  which equals 4.27. The standard error estimated from repli-

cate estimates is the same as the estimate obtained directly from the sample, sug-
gesting the jackknife procedure works.

The jackknife procedure also allows us to estimate the standard error for the 
median. The fi rst replicate estimate for the median is based on the nine observations 
remaining after deleting the fi rst observation as before. Deleting each observation in 
turn allows us to determine ten replicate estimates of the median as shown in Table 
15.3. The mean of the replicate medians is 59.9. Using the same formula shown above, 
we can estimate the standard error of the median and this value is 5.27.

Table 15.3 Estimation of standard error by the 
jackknife procedure for the mean and median age for 
10 patients in DIG40.

  Jackknife Replicate
  Estimates

Patient Age Mean Median

 1 55 58.56 60
 2 78 56.00 59
 3 50 59.11 60
 4 60 58.00 59
 5 31 61.22 60
 6 70 56.89 59
 7 46 59.56 65
 8 59 58.11 59
 9 68 57.11 59
10 65 57.44 59

Mean 58.2 58.2 59.9
Median 59.5

Standard error estimates for the mean:
 From the sample 4.27
 From jackknife replicates 4.27
Standard error estimate for the median:
 From jackknife replicates 5.27
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430  Analysis of Survey Data

of replicates must be used in analytic studies to ensure that there are adequate degrees 
of freedom.

15.3.4   Linearization Method

A completely different approach from the pseudo-replication methods for estimating 
variances from complex survey designs follows a more mathematical approach. This 
mathematical approach, called Taylor series linearization, is used in statistics to obtain 
a linear approximation to nonlinear functions. The beauty of the Taylor series is that 
many nonlinear functions are approximated quite well by only the fi rst few terms of the 
series. This approach has gained wide acceptance in the analysis of weighted data from 
complex surveys because many of the statistics that we estimate, including regression 
coeffi cients, are nonlinear, and their estimated variances are also nonlinear. This 
approach to variance estimation has several other names in the literature, including the 
linearization method and the delta method. A brief presentation of the Taylor series 
approach and an example is presented in Appendix A.

The following example demonstrates how the linearization works for the calculation 
of sampling variance of a ratio estimate.

Example 15.4

We consider a small sample for this illustration. A simple random sample of eight 
health departments was selected from 60 (N ) rural counties to estimate the total 
number of professional workers with a master of public health degree. It is known 
that the 60 health departments employ a total of 1150 (Y) professional workers. The 
sample data shown in Table 15.4 are the number of professional workers (yi) and the 
number of professional workers with an MPH degree (xi).

Based on the sample data on the number of workers with an MPH degree, we can 
estimate the total number of professional workers with an MPH degree, that is 630 
(= N x– = 60  *  10.5). The variance of this estimate is V̂ar(N x–) = N 2V̂ar( x– ) as shown 
in Chapter 4. Using Equation 15.1 for V̂ar(x– ), the estimated standard error of this 
estimate is

N x x

n n

n

N
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2 2
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Table 15.4 Numbers of professional workers and professionals with an MPH degree for 8 sample 
health departments.

Health Department Number of Professional Workers (yi) Number of Workers with MPH (xi)

1 21 14
2 18 8
3 9 3
4 13 6
5 15 8
6 22 13
7 30 17
8 27 15
Mean 19.375 10.5
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Since the total number of professional workers for the population is known and x 
and y are highly correlated, we prefer to use a ratio estimate. The ratio estimate of 
the total number of professional workers with an MPH is

ˆ .
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Y= ⎛
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19 375
1150 623 

The standard error calculation for the ratio estimate is complicated because both 
the numerator and denominator of the ratio are random variables. The linearization 
method can provide an approximation. Using Stata we obtained the following results 
(see Program Note 15.1 on the website):

Ratio Estimate Std. Err. [95% Conf. Interval] Deff

totxmph/prof 623.2258 29.92157 552.4725  693.9791 1

The estimated standard error for the ratio estimate is 29.9, which is much smaller 
than that obtained by simple random sample estimator (97.3), suggesting that the 
ratio estimate is the preferred method of estimation for this case.

The Taylor series approximation is applied to PSU totals within strata — that is, the 
variance estimate is a weighted combination of the variation across PSUs within the 
same stratum. This calculation is complex but can require much less computing time 
than the replication methods just discussed. This method can be applied to any statistic 
that is expressed mathematically — for example, the mean and the regression coeffi cient. 
But it cannot be used with nonfunctional statistics such as the median and other 
percentiles.

15.4   Strategies for Analysis
We introduce the Third National Health and Nutrition Examination Survey (NHANES 
III) here to illustrate the methods of survey data analysis. NHANES III, sponsored by 
NCHS (1994), collected information on a variety of health-related subjects from a large 
number of individuals through personal interviews and medical examinations. Its sample 
design was complex to accommodate the practical constraints of cost and survey require-
ments, resulting in a stratifi ed, multistage, probability cluster sample of eligible persons 
in households. The PSUs were counties or small groups of contiguous counties and a 
total of 2812 PSUs were divided into 47 strata based on demographic characteristics. 
Thirteen of the 47 strata contained one large urban county, and these urban PSUs were 
automatically included in the sample. Two PSUs were sampled from each of the remain-
ing 34 strata. The subsequent hierarchical sampling units included census enumeration 
districts, clusters of households, households, and eligible persons. Preschool children, 
the aged, and the poor were oversampled to provide suffi cient numbers of persons in 
these subgroups. The NHANES III was conducted in two phases. The 13 large urban 
counties were rearranged into 21 survey sites, subdividing some large counties. Combin-
ing with nonurban PSUs, 89 survey sites were randomly divided into two sets: 44 sites 
were surveyed in 1988–1991 (Phase I) and the remaining 45 sites in 1991–1994 (Phase 
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II). Each phase sample can be considered an independent sample, and the combined 
sample can be used for a large-scale analysis.

We chose to use the Phase II adult sample (17 years of age and over) of 
NHANES III. It included 9920 observations that are arranged in 23 pseudo-strata 
with 2 pseudo-PSUs in each stratum. The sample weight contained in the public-use 
micro data fi les is the expansion weight (inverse of selection probability adjusted 
for nonresponse and poststratifi cation). We created a working data fi le by selecting 
variables and calculating new variables such as body mass index. The expansion weight 
was converted to the relative weight by dividing the expansion weight by the average 
weight.

15.4.1   Preliminary Analysis

Survey data analysis begins with a preliminary exploration to see whether the data are 
suitable for a meaningful analysis. One important consideration in the preliminary 
examination of sample survey data is to examine whether there is a suffi cient number 
of observations available in the various subgroups to support the proposed analysis. 
Based on the unweighted tabulations, the analyst determines whether sample sizes are 
large enough and whether categories of the variables need to be collapsed. The 
unweighted tabulations also give the number of the observations with missing values 
and those with extreme values, which could indicate either measurement errors or errors 
of transcription.

It is also necessary to examine if all the PSUs have a suffi cient number of observa-
tions to support the planned analysis. Some PSUs may contain only a few or no obser-
vations because of nonresponse and exclusion of missing values. If necessary, the PSUs 
with none or only a few observations may be combined with an adjacent PSU within 
the same stratum. If a stratum contains only a single PSU as a result of combining PSUs, 
it may be combined with an adjacent stratum. However, collapsing too many PSUs and 
strata is not recommended because the resultant design may now differ substantially 
from the original design.

The number of observations that is needed in each PSU is dependent on the type of 
analysis planned. The required number is larger for analytic studies than for estimation 
of descriptive statistics. A general guideline is that the number should be large enough 
to estimate the intra-PSU variance for a given estimate.

The fi rst step in a preliminary analysis is to explore the distributions of key variables. 
The tabulations may point out the need for refi ning operational defi nitions of variables 
and for combining categories of certain variables. Based on summary statistics, one 
may discern interesting patterns in the distributions of certain variables in the sample. 
After analyzing the variables one at a time, we can use standard graphs and SRS-based 
statistical methods to examine relations among variables. However given the importance 
of sampling weights in survey data, any preliminary analysis ignoring the weights may 
fail to uncover important aspects of the data.

One way to conduct a preliminary analysis taking weights into account is to select 
a subsample of manageable size with the probability of selection proportional to the 
magnitude of the weights (PPS). The PPS subsample can be explored with the regular 
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descriptive and graphic methods, since the weights are now refl ected in the selection of 
the subsample.

Example 15.5

For a preliminary analysis, we generated a PPS sample of 1000 from the 9920 persons 
in the adult fi le of Phase II of NHANES III. We fi rst sorted the total sample by 
stratum and PSU and then selected a PPS subsample systematically using a skipping 
interval of 9.92 on the scale of cumulative relative weights. The sorting by stratum 
and PSU preserved in essence the integrity of the original sample design.

Table 15.5 demonstrates the use of our PPS subsample analyzed by conventional 
statistical methods. In this demonstration, we selected several variables that are 
likely to be most affected by the weights. Because of oversampling of the elderly and 
ethnic minorities, the weighted estimates are different from the unweighted estimates 
for mean age and percent Hispanic. The weights also make a difference for vitamin 
use and systolic blood pressure as well as for the correlation between body mass 
index and systolic blood pressure. The subsample estimates, although not weighted, 
are very close to the weighted estimates in the total sample, supporting the use of a 
PPS subsample for preliminary analysis.

Table 15.5 Comparison of sample statistics based on the PPS subsample and the total sample, 
NHANES III, Phase II (adults 17 years of age and older).

 Sample Statistics

 Mean Percent Mean Percent Correlation
Sample Age Hispanic SBPa Vitamin Use BMIb & SBP

PPS subsample (n = 1000)
 Unweighted 42.9 5.9 122.2 43.0 0.235
Total sample (n = 9920)
 Weighted 43.6 5.4 122.3 42.9 0.243
 Unweighted 46.9 26.1 125.9 38.4 0.153
aSystolic blood pressure
bBody mass index

15.4.2   Subpopulation Analysis

When we analyze the data from a simple random sampling design, it is customary to 
perform some specifi c subdomain analysis — that is, to analyze separately, for example, 
different age groups or different sexes. However we have to be careful how we carry 
out this practice with complex survey data. Elimination of observations outside the 
specifi c group of interest — say, Hispanics, for example — does not alter the sample 
weights for Hispanics, but it can complicate the calculation of variances. For example, 
selecting Hispanics for analysis may mean that there are a small number or even no 
observations in some PSUs. As a result, several PSUs and, possibly, even strata might 
have to be combined to be able to calculate the variances. However, the sample structure 
resulting from these combinations may no longer resemble the original sample design. 
Thus, selecting out observations from a complex survey sample may lead to an incorrect 
estimation of variance (Korn and Graubard 1999, Section 5.4). The correct estimation 
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of variance requires keeping the entire data set in the analysis and assigning weights of 
zero to observations outside the group of interest.

Example 15.6

Let us consider the case of estimating the mean BMI for African Americans from 
Phase II of NHANES III. For illustration purposes, we attempted to select only 
African Americans from the sample, but we could not carry out the analysis because 
the computer program we were using detected PSUs with no observations. A tabula-
tion of African Americans by stratum and PSU showed that only one PSU remained 
in the 13th and 15th strata. After collapsing these two strata with adjacent strata 
(arbitrarily with the 14th and 16th stratum, respectively), we obtained the mean BMI 
of 27.25 with the design effect of 2.78.

The subpopulation analysis using the entire sample and assigning weights of zero 
to non–African American observations produced the same sample mean BMI of 
27.25, but the design effect was now 1.07, a much smaller value. For the use of sub-
population analysis, see Program Note 15.2 on the website.

15.5   Some Analytic Examples
This section presents various examples based on Phase II of NHANES III data. The 
emphasis is on the demonstration of the effects of incorporating the sample weights and 
the design features on the analysis, rather than examining substantive research ques-
tions. We begin with descriptive analysis followed by contingency table analysis and 
regression analysis.

15.5.1   Descriptive Analysis

In descriptive analysis of survey data, the sample weights are used, and the standard 
errors for the estimates are calculated using one of the methods discussed that incorpo-
rate strata and PSUs. When the sample size is small, the FPC is also incorporated in 
the calculation of the standard errors. The method of calculating confi dence intervals 
follows the same principles shown in Chapter 7. However, the degrees of freedom in 
the complex sample design are the number of PSUs sampled minus the number of strata 
used instead of n − 1. In certain circumstances, the determination of the degrees of 
freedom differs from this general rule (Korn and Graubard 1999, Section 5.2).

Example 15.7

We calculated sample means and proportions for selected variables from Phase II of 
NHANES III. We incorporated the sample weights, strata, and PSUs in the analysis, 
but the FPC was not necessary because the sample size was 9920. Table 15.6 shows 
the weighted and unweighted estimates and the standard errors, 95 percent confi -
dence intervals, and the design effects for the weighted estimates.
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15.5.2   Contingency Table Analysis

In Chapter 10, we used the Pearson chi-square statistic to test the null hypothesis 
of independence in a contingency table under the assumption that data came from an 
SRS. For the analysis of a two-way table based on complex survey data, the test proce-
dure needs to be changed to account for the survey design. Several different test statis-
tics have been proposed. Koch et al. (1975) proposed the use of the Wald statistic and 
it has been used widely. The Wald statistic is usually converted to an F statistic 
to determine the p-value. In the F statistic, the numerator degrees of freedom are 
tied to the dimension of the table and the denominator degrees of freedom refl ect the 
survey design.

We illustrate the use of Wald statistic based on a 2 by 2 table examining the gender 
difference in prevalence of asthma based on data from Phase II of NHANES III. We 
fi rst look at the unweighted tabulation of asthma by sex shown in Table 15.7. Ignoring 
the sample design, the prevalence rates for males and females are 6.1 and 7.6 percent, 
respectively. The Pearson chi-square value and the associated p-value shown in the table 
mean that the difference between the two prevalence rates is statistically signifi cant at 

The differences between the weighted and unweighted estimates are large for 
several variables. The weighted mean age is about 3.5 years smaller than the 
unweighted mean refl ecting the oversampling of the elderly. The weighted proportion 
of blacks is over 60 percent smaller than the unweighted proportion and the weighted 
proportion of Hispanics is nearly 80 percent smaller than the unweighted, refl ecting 
the oversampling of these two ethnic groups. The weighted mean years of education 
is nearly two years greater than the unweighted mean, refl ecting that the oversampled 
elderly and/or minority groups have lower years of schooling. The weighted percent 
of vitamin use is also somewhat greater than the unweighted estimate.

The standard errors for the weighted estimates were calculated by the lineariza-
tion method. The design effects shown in the last column suggest that the estimated 
standard errors are considerably greater than those calculated under the assumption 
of simple random sampling. The 95 percent confi dence intervals for the weighted 
estimates were calculated using the t value of 2.0687 based on 23 (= 46 PSUs − 23 
strata) degrees of freedom. See Program Note 15.3 for this descriptive analysis.

Table 15.6 Descriptive statistics for selected variables: adult sample, Phase II of NHANES III 
(n = 9920).

 Unweighted Weighted Standard Confi dence Design
Variable Statistics Statistics Error Interval Effect

Mean age (years) 46.9 43.6 0.57 (42.4, 44.7) 10.31
Percent Black 29.8 11.2 0.97 (9.2, 13.3) 9.42
Percent Hispanic 26.1 5.4 0.71 (4.0, 6.9) 9.68
Mean years of education* 10.9 12.3 0.12 (12.1, 12.6) 15.01
Mean SBP (mmHg)* 125.9 122.3 0.39 (121.4, 123.0) 4.20
Mean BMI* 26.4 25.9 0.12 (25.7, 26.2) 5.00
Percent vitamin use* 38.4 43.0 1.22 (40.4, 45.5) 5.98
Percent smoker* 46.2 51.1 1.16 (48.7, 53.5) 5.28

*A small number of missing values were imputed.
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the 0.01 level. However, we know this conclusion could be misleading because we did 
not account for the sample design in the calculation of the test statistic.

Let us now look at weighted cell proportions shown in Table 15.8. Under the null 
hypothesis of independence, the estimated expected proportion in cell (1, 1) is (p1)(p1). 
Let q̂ = p11 − (p1)(p1). Then Wald chi-square is defi ned as

 X 2
w = q̂ 2/V̂(q̂).

We can fi nd V̂(q̂ ) by using one of the methods discussed in previous section. The Wald 
test statistic, X 2

w, approximately follows a chi-square distribution with one degree of 
freedom.

For the weighted proportions in Table 15.8, q̂ = −0.0034786 and its variance is 
0.000003674 (calculated using the linearization method). The Wald chi-square is
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and the associated p-value is 0.070. A more accurate p-value can be obtained from 
F(1, 23) = 3.2941 with p-value of 0.083. Taking into account the sample design, 
the gender difference in prevalence of asthma is statistically insignifi cant at the 
0.05 level.

Rao and Scott (1984) offered another test procedure for contingency table analysis 
of complex surveys. This procedure adjusts a different chi-square test statistic and again 
uses an F statistic with noninteger degrees of freedom to determine the appropriate 
p-value. Some software packages implemented the Rao-Scott corrected statistic as the 
default procedure. In most situations, the Wald statistic and the Rao-Scott statistic lead 
to the same conclusion.

Table 15.7 Unweighted tabulation of asthma by sex: Phase II, NAHNES III.

Asthma Male Female Total

Present (Percent)  264 (6.1)  421 (7.6)  685 (6.9)
Absent 4085 5150 9235

Total 4349 5571 9920

 Chi-square (1): 8.397
  p-value: 0.004

Table 15.8 Weighted proportions for asthma by sex, Phase II, 
NAHNES III.

Asthma Male Female Total

Present 0.0341 (p11) 0.0445 (p12) 0.0786 (p1⋅)
Absent 0.4440 (p21) 0.4775 (p22) 0.9214 (p2⋅)
Total 0.4781 (p⋅1) 0.5219 (p⋅2) 1.0000 (p⋅⋅)

Wald statistics: Chi-square: 3.2941
 F (1, 23): 3.2941
 p-value: 0.0826
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Example 15.8

Table 15.9 presents analysis of a 2 by 3 contingency table using data from Phase II 
of NHANES III. In this analysis, the association between vitamin use and years of 
education is examined with education coded into three categories (1 = less than 12 
years of education; 2 = 12 years; 3 = more than 12 years). The weighted percent of 
vitamin users by the level of education varies from 33 percent in the fi rst level of 
education to 52 percent in the third level of education. The confi dence intervals for 
these percentages are also shown. Both the Wald and the Rao-Scott statistics are 
shown in this table and we draw the same conclusion from both.

We next examined the relation between the use of vitamins and the level of educa-
tion for the Hispanic population. Here we used a subpopulation analysis based on 
the entire sample. The results are shown in Table 15.10. The estimated overall pro-
portion of vitamin users among Hispanics is 31 percent, considerably lower than the 
overall value of 43 percent shown in Table 15.8. The Wald test statistic in Table 15.10 
also shows there is a statistically signifi cant relation between education and use of 
vitamins among Hispanics.

See Program Note 15.4 for this analysis.

Table 15.9 Percent of vitamin use by levels of education among U.S. adults, Phase II, NHANES III 
(n = 9920).

 Less than H.S. H.S. Graduate Some College Total

Percent 33.4 39.8 51.67 43.0
Confi dence Interval [30.1, 36.9] [36.2, 43.5] [47.6, 55.7] [40.4,.45.5]

 Wald Statistic: Chi-square (2):  51.99
  F (2, 22):  24.87
  p-value:  <0.0001

 Rao-Scott Statistic: Uncorrected chi-square (2): 234.10
  Design-based F (1.63, 37.46):  30.28
  p-value:  <0.0001

Table 15.10 Percent of vitamin use by levels of education for Hispanic population, Phase II, 
NHANES III (n = 2593).

 Less than H.S. H.S. Graduate Some College Total

Percent 26.2 32.7 44.1 30.9
Confi dence Interval [22.1, 30.7] [28.8, 36.9] [36.9, 51.58] [27.1, 34.9]

Wald Statistic:   Chi-square (2):   47.16
 F (2, 22): 22.56
 p-value: <0.0001

15.5.3   Linear and Logistic Regression Analysis

In Chapter 13, we used ordinary least squares (OLS) estimation to obtain estimates of 
the regression coeffi cients or the effects in the linear model assuming simple random 
sampling. However, using the OLS method with data from a complex sample design 
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will result in biased estimates of model parameters and their variances. Thus, confi dence 
intervals and tests of hypotheses may be misleading.

The most widely used method of estimation for complex survey data when using the 
general linear model is the design-weighted least squares (DWLS) method. The DWLS 
approach is slightly different from the weighted least squares (WLS) method for unequal 
variances that derives the weights from an assumed covariance structure. In the DWLS 
approach, the weights come from the sampling design, and the variance/covariance is 
estimated using one of the methods discussed in the previous section. This approach is 
supported by most of the software for complex survey data analysis. Several sources 
provide a more detailed discussion of regression analysis of complex survey data (Korn 
and Graubard 1999, Section 3.5; Lohr 1999, Chapter 11).

Since these methods use the PSU total rather than the individual value as the basis 
for the variance computation, the degrees of freedom for this design again equal d, the 
number of PSUs minus the number of strata. For the test of hypothesis we need to take 
into account the number of parameters being tested. For example, for an F test, the 
numerator degrees of freedom is the number of parameters being tested (q) and the 
denominator degrees of freedom is d − q + 1.

Example 15.9

We conducted a general linear model analysis of systolic blood pressure on height, 
weight, age, sex (male = 0), and vitamin use (user = 1) using the same NHANES III 
data. We did not include any interaction terms in this example, although their inclu-
sion would undoubtedly have increased the R-square. Imputed values were not used 
in this analysis. The results are shown in Table 15.11. See Program Note 15.5 on 
the website for the analysis.

These results can be interpreted in the same manner as in Chapter 13. The 
R-square is 39 percent and the F statistic for the overall ANOVA is signifi cant. There 
are fi ve degrees of freedom for the numerator in the overall F, since fi ve independent 
variables are included in the model. There are 19 (= 46 − 23 − 5 + 1, based on the 
numbers of PSUs, strata and independent variables in the model) (Korn and Graubard 
1999) degrees of freedom for the denominator in the overall F ratio. All fi ve explana-
tory variables are also individually statistically signifi cant.

Table 15.11 Multiple regression analysis of systolic blood pressure on selected variables for U.S. 
adults, Phase II, NHANES III. (n = 9235).

 Regression
Variable Coeffi cient Standard Error t p > |t| Design Effect

Height −0.4009 0.1023 −3.92 0.001 3.39
Weight 0.0917 0.0048 19.11 <0.001 1.06
Age 0.6004 0.0132 45.58 <0.001 1.67
Sex 4.0293 0.6546 6.16 <0.001 2.44
Vitamin use −1.1961 0.4194 −2.85 0.009 1.85
Intercept 106.2809 6.7653 15.71 <0.001 3.96

Model statistics F (5,19): 937.30
 p-value: <0.0001
 R-squared: 0.393
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In Chapter 14, we presented the logistic regression model and the maximum likeli-
hood estimation procedure. We can also modify this estimation approach to use logistic 
regression with complex survey data. The modifi ed estimation approach that incorpo-
rates the sampling weights is generally known as pseudo or weighted maximum likeli-
hood estimation (Chambless and Boyle 1985; Roberts, Rao, and Kumar 1987). The 
variance/covariance matrix of the estimated coeffi cients is calculated by one of the 
methods discussed in the previous section. As discussed earlier, the degrees of freedom 
associated with this covariance matrix are the number of PSUs minus the number of 
strata. Because of all these changes to the standard approach, we use the adjusted Wald 
test statistic instead of the likelihood-ratio statistic in determining whether or not the 
model parameters, excluding the constant term, are simultaneously equal to zero.

The selection and inclusion of appropriate predictor variables for a logistic regression 
model can be done similarly to the process for linear regression. When analyzing a large 
survey data set, the preliminary analysis strategy described in the earlier section is very 
useful in preparing for a logistic regression analysis.

Example 15.10

Based on Phase II of NHANES III, we performed a logistic regression analysis of 
vitamin use on two categorical explanatory variables: sex (1 = male; 0 = female) and 
education (less than 12 years of education; 12 years; more than 12 years). Two 
dummy variables are created for the education variable: edu1 = 1 if 12 years of edu-
cation and 0 otherwise; edu2 = 1 if more than 12 years and 0 otherwise; the less 
than 12 year category is the reference category. The results are shown in Table 15.12 
(see Program Note 15.6 for this analysis).

The log-likelihood ratio is not shown because the pseudo likelihood is used and 
an F statistic derived from the modifi ed Wald statistic is shown. The numerator 
degrees of freedom for this statistic is 3 (based on the number of independent vari-
ables) and the denominator degrees of freedom is 21 (= 46 − 23 − 3 + 1, based the 
numbers of PSUs, strata, and independent variables) (Korn and Graubard 1999). The 
small p-value suggests that the main effects model is a signifi cant improvement over 
the null model. The estimated design effects suggest that the variances of the beta 
coeffi cients are roughly twice as large as those calculated under the assumption of 
simple random sampling. Despite the increased standard errors, the beta coeffi cients 
for gender and education levels are signifi cant.

Table 15.12 Logistic regression analysis of vitamin use on sex and levels of education among U.S. 
adults, Phase II, NHANES III (n = 9920).

 Estimated Standard   Design Odds Confi dence
Variable Coeffi cient Error t p > |t| Effect Ratio Interval

Male −0.4998 0.0584 −8.56 <0.001 1.96 0.61 [0.54, 0.68]
Edu1 0.2497 0.0864 2.89 0.008 2.45 1.28 [1.07, 1.53]
Edu2 0.7724 0.0888 8.69 <0.001 2.84 2.16 [1.80, 2.60]
Constant −0.4527 0.0773 −5.86 <0.001 2.82

Model statistics F (3, 21): 63.61
 p-value <0.0001
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Conclusion
In this chapter, we discussed issues associated with complex sample surveys focusing 
on design-based statistical inference. We summarized the two key complications that 
arise in the analysis of data from complex sample surveys: the need to include sample 
weights and the need to take the sample design into account in calculating the sampling 
variance of weighted statistics. We presented several different approaches to the calcula-
tion of the sample variances. Practically all statistical methods discussed in previous 
chapters can be applied to complex survey data with some modifi cations. For the analy-
sis of a specifi c subgroup, we pointed out that the entire sample is used although we set 
the weights to zero for the observations outside the subgroup. Statistical programs for 
complex surveys are now readily available, but one needs to guard against misuse of 
the programs. For a proper analysis, one must understand the sample design and conduct 
a thorough preliminary examination of data. We conclude this chapter by again empha-
sizing the need to reduce nonresponse and to study some of the nonrespondents if 
possible.

EXERCISES

15.1 The following data represent a small subset of a large telephone survey. The 
sample design was intended to be an equal probability sample on each phone 
number. Within each selected household one adult was sampled using the 
Kish selection table (Kish 1949). Some households may have more than one 
phone number and these households are more likely to be selected in random 
digit dialing. Therefore, selection probability is unequal for individual 
respondents.

The rest of the results can be interpreted in the same way as in Chapter 14. The 
estimated odds ratio for males is 0.61, meaning that, after adjusting for education, 
the odds of taking vitamins for a male is 61 percent of the odds that a female uses 
vitamins. The 95 percent confi dence interval provides a test of whether or not the 
odds ratio is equal to one. The odds ratio for the third level of education suggests 
that persons with some college education are twice as likely to take vitamins than 
those with less than 12 years of education for the same gender. None of the 95% 
confi dence intervals include one, suggesting that all the effects are signifi cant at the 
0.05 level. As in regular logistic regression analysis, we may combine the estimated 
beta coeffi cients to make specifi c statements. For example, the estimated odds ratio 
for males with some college education compared with females with less than 12 years 
of education can be obtained by exp(−0.4998 + 0.7724) = 1.31. Since we have not 
included any interaction effects in the model, the resulting odds ratio of 1.31 can be 
interpreted as indicating that the odds of taking vitamins for males with some college 
education is 31 percent higher than the odds for females with less than 12 years of 
education.
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 Develop the sample weight for each respondent, calculate the weighted percent-
age of smokers, and compare with the unweighted percentage. How would you 
interpret the weighted and unweighted percentages?

15.2 A community mental health survey was conducted using 10 replicated samples 
selected by systematic sampling from a geographically ordered list of residential 
electric hookups (Lee et al. 1986). The total sample size was 3058, and each 
replicate contained about 300 respondents. The replicated samples were selected 
to facilitate the scheduling and interim analysis of data during a long period of 
screening and interviewing, not for estimating the standard errors. Because one 
adult was randomly selected from each household, the number of adults in each 
household became the sample weight for each observation. This weight was 
then adjusted for nonresponse and poststratifi cation and the adjusted weights 
were used in the analysis. The prevalences of any mental disorders during the 
past six months and the odds ratios for sex differences in the six-month preva-
lence rates of mental disorders are shown here for the full sample and the 10 
replicates.

 Number Number Smoking  Number Number Smoking
Household of Adults of Phones Status Household of Adults of Phones Status

 1 3 1 yes 11 4 2 no
 2 2 1 no 12 1 1 no
 3 4 1 no 13 2 1 no
 4 2 1 no 14 3 1 yes
 5 2 1 no 15 1 1 no
 6 5 2 no 16 3 1 no
 7 4 1 yes 17 2 1 no
 8 2 1 no 18 2 1 yes
 9 3 1 yes 19 3 1 no
10 2 1 no 20 2 1 yes

Replicate Prevalence Rate Odds Ratio

Full sample 17.17 0.990
 1 12.81 0.826
 2 17.37 0.844
 3 17.87 1.057
 4 17.64 0.638
 5 16.65 0.728
 6 18.17 1.027
 7 14.69 1.598
 8 17.93 1.300
 9 17.86 0.923
10 18.91 1.111

 Estimate the standard errors for the prevalence rate and the odds ratio based on 
replicate estimates. Is the approximate standard error based on the range in 
replicate estimates satisfactory?

15.3 From Phase II of NHANES III, the percent of adults taking vitamin or mineral 
supplements was estimated to be 43.0 percent with a standard error of 1.22 
percent. The design effect of this estimate was 5.98 and the sample size was 
9920. What size sample would be required to estimate the same quantity with 
a standard error of 2 percent using a simple random sampling design?

Exercises  441
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15.4 Read the article by Gold et al. (1995). Describe how their sample was designed 
and selected. What was the nonresponse rate? Describe also the method of 
analysis. Did they account for the sampling design in their analysis? If you fi nd 
any problems, how would you rectify the problems?

15.5 Using the data fi le extracted from the adult sample in the Phase II of NHANES 
III (available on the web), explore one of the following research questions and 
prepare a brief report describing and interpreting your analysis:
a. Are more educated adults taller than less educated people?
b. Does the prevalence rate of asthma vary by region?
c. Does the use of antacids vary by smoking status (current, previous, and never 

smoked)?
15.6 Read the article by Flegal et al. (1995), and prepare a critical review of it. Is the 

purpose and design of the survey properly integrated in the analysis and conclu-
sion? Is the model specifi ed appropriately? Do you think the analysis is done 
properly? Would you do any part of the analysis differently?

15.7 Select another research question from Exercise 15.5. Conduct the analysis with 
and without incorporating the weight and design features and compare the 
results. How would you describe the consequence of not accounting for the 
weight and design features in the complex survey analysis?
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