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In this chapter we present methods for examining the relation between a response or 
dependent variable and one or more predictor or independent variables. The methods 
are based on the linear model introduced in Chapter 12. In linear regression, we examine 
the relation between a normally distributed response or dependent variable and one or 
more continuous predictor or independent variables. In a sense, linear regression is an 
extension of the correlation coeffi cient. Although linear regression was created for the 
examination of the relation between continuous variables, in practice, people often use 
the term linear regression even when continuous and discrete independent variables are 
used in the analysis.

Linear regression is one of the more frequently used techniques in statistics today. 
These methods are often used because problems, particularly those concerning humans, 
usually involve several independent variables. For example, in the creation of norms for 
lung functioning, age, race, and sex are taken into account. Linear regression is one 
approach that allows multiple independent variables to be used in the analysis. In the 
linear regression model, the dependent variable is the observed pulmonary function test 
value and age, race, and sex are the independent variables. When the dependent variable 
is a discrete variable as in the disease status (presence or absence), logistic regression 
(the topic of the next chapter) is used to consider many possible risk factors related to 
the disease.

13.1   Simple Linear Regression
Simple linear regression is used to examine the relation between a normally distributed 
dependent variable and a continuous independent variable. An example of a situation 
where simple linear regression is useful is the following.

Some physicians believe that there should be a standard — a value that only a small 
percentage of the population exceeds — for blood pressure in children (NHLBI Task 
Force 1987). When a standard is used, it is desirable that it be easy for the physician to 
quickly and accurately determine how the patient relates to the standard. Therefore, the 
standards should be based on a small number of variables that are easy to measure. 
Since it is known that blood pressure is related to maturation, the variables used in the 
development of the standard should, therefore, refl ect maturation. Two variables that are 
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350  Linear Regression

related to maturation and are easy to measure are age and height. Of these two variables, 
height appears to be the more appropriate variable for the development of standards 
(Forthofer 1991; Gillum, Prineas, and Horibe 1982; Voors et al. 1977). Because of physi-
ological differences, the standards are developed separately for females and males. In 
the following, we shall focus on systolic blood pressure (SBP).

In developing the standards, we are going to assume that the mean SBP for girls 
increases by a constant amount for each one unit increase in height. The use of the mean 
instead of the individual SBP values refl ects the fact that there is variation in the SBP 
of girls of the same height. Not all the girls who are 50 inches tall have the same SBP 
value; their SBPs vary about the mean SBP of girls who are 50 inches tall. The assump-
tion of a constant increase in the mean SBP for each one unit increase in height is 
characteristic of a linear relation. Thus, in symbols, the relation between Y, the SBP 
variable, and X, the height variable, can be expressed as

mY |X = b0 + b1X

where
 
mY |X is the mean SBP for girls who are X units tall, b0 is a constant term, and b1 

is the coeffi cient of the height variable — that is, b1 is the increase in the mean SBP for 
each one unit change in height. The b0 coeffi cient is the Y intercept and b1 is the slope 
of the straight line.

In general, the X variable shown in the preceding expression may represent the 
square, the reciprocal, the logarithm, or some other nonlinear transformation of a vari-
able. This is acceptable in linear regression because the expression is really a linear 
combination of the bi’s, not of the independent variables.

The preceding equation is similar to the linear growth model in Chapter 3 and the 
linear model representation of ANOVA. In the ANOVA model, values of the X variables, 
1 or 0, indicate which effect should be added in the model. In the regression model, the 
values of the X variable are the individual observations of the continuous independent 
variable. The parameters in the ANOVA model are the effects of the different levels of 
the independent variable. In the regression model, the parameters are the Y-intercept 
and the slope of the line.

Figure 13.1 shows the graph of this simple linear regression equation. The ⊗ symbols 
show the values of the mean SBP for the different values of height that we are consider-
ing. As we can see, a straight line does indeed have a rate of increase in the mean SBP 
that is constant for each one unit increase in height. The � symbols show the projected 
values of the mean SBP, assuming that the relationship holds for very small height values 
as well. It is usually inappropriate to estimate the values of mY |X for values of X outside 
the range of observation. The point at which the projected line intersects the mY |X axis 
is b0. Since b1 is the amount of increase in mY |X for each one unit increase in X, the 
bracketed change in mY |X is 8 b1, since X has increased 8 units from x1 to x2. Note that if 
the regression line is fl at — that is, parallel to the X axis — this means that there is no 
change in mY |X regardless of how much X changes. Thus, if the regression line is fl at, 
then b1 is zero and there is no linear relation between mY |X and X.

If we wish to express this relationship in terms of individual observations, we must 
take the variation in SBP for each height into account. The model that does this is

yi = b0 + b1xi + ei
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where ei represents the difference between the mean SBP value at height xi and the SBP 
of the ith girl who is also xi units tall. The e term is also referred to as the residual or 
error term. Knowledge of b0 and b1 is necessary in developing the standards for SBP. 
However, we do not know them and we have to collect data to estimate these values.

13.1.1   Estimation of the Coeffi cients

There are a variety of ways of estimating b0 and b1. We must decide on what criterion 
we will use to fi nd the “best” estimators of these two coeffi cients. Possible criteria 
include minimization of the following:

1. The sum of the differences of yi and ŷi, where yi is the observed value of the SBP 
and ŷi is the estimated value of the SBP for the ith girl. The value of ŷi is found 
by substituting the estimates of b0 and b1 in the simple linear regression equation 
— that is, ŷi = b̂0 + xib̂1, where xi is the observed value of height for the ith girl.

2. The sum of the absolute differences of yi and ŷi.
3. The sum of the squared differences of yi and ŷi.

The fi rst criterion can be made to equal zero by setting b̂1 to zero and letting b̂0 equal 
to the sample mean. The use of the absolute value yields interesting estimators, but the 
testing of hypotheses is more diffi cult with these estimators. Based on considerations 
similar to those discussed in Chapter 3 in the presentation of the variance, we are going 
to use the third criterion to determine our “best” estimators.

Thus our estimators of the coeffi cients will be derived based on the minimization of 
the sum of squares of the differences of the observed and estimated values of SBP. In 
symbols, this is the minimization of

y yi i
i

−( )∑ ˆ .2

The use of this criterion provides estimators that are called least squares estimators 
because they minimize the sum of squares of the differences.

The least squares estimators of the coeffi cients are given by

Figure 13.1 Line 
showing the regression 
of mY|X on X.
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and

b̂0 = y– − b̂1x–.

The second formula for b̂1 is provided because it is easier to calculate. Let’s use these 
formulas to calculate the least squares estimates for the data in Table 13.1. The hypo-
thetical values of the SBP and height variables for the 50 girls are based on data from 
the NHANES II (Forthofer 1991).

The value of b̂1 is found from
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The calculation of b̂0 is easier to perform, and its value is found from

b̂0 = y– − b̂1x– = 101.5 − 0.7688(52.5) = 61.138.

Table 13.1 Hypothetical data — SBP and predicted SBPa (mmHg) and height (inches) for 50 girls.

 Predicted Predicted Predicted
SBP SBP Height SBP SBP Height SBP SBP Height

105 88.8 36 120 98.0 48 94 106.5 59
 90 89.6 37 114 98.8 49 88 107.3 60
 82 90.4 38 78 98.8 49 110 107.3 60
 96 90.4 38 116 99.6 50 124 107.3 60
 82 91.1 39 74 99.6 50  86 108.0 61
 74 91.1 39 80 100.3 51 120 108.0 61
104 91.9 40 98 101.1 52 112 108.8 62
100 91.9 40 90 101.9 53 100 109.6 63
 80 92.7 41 92 102.7 54 122 110.3 64
 98 93.4 42 80 102.7 54 122 110.3 64
 96 94.2 43 88 102.7 54 110 111.1 65
 86 95.0 44 104 103.4 55 124 111.1 65
 88 95.0 44 100 104.2 56 122 111.9 66
128 95.0 44 126 105.0 57 94 112.6 67
118 95.7 45 108 105.7 58 110 112.6 67
 90 96.5 46 106 106.5 59 140 114.2 69
108 98.0 48 98 106.5 59
aPredicted using the least squares estimates of the regression coeffi cients.

The estimated coeffi cient of the height variable is about 0.8, which means that there 
is an increase of 0.8  mmHg in SBP for an increase of 1 inch in height for girls between 
the heights of 36 and 69 inches. The estimate of the b0 coeffi cient is about 60  mmHg 
and that is the Y intercept. Based on projecting the regression line beyond the data values 
observed, the Y intercept gives the value of SBP for a girl 0 inches tall. However, it does 
not make sense to talk about the SBP for a girl 0 inches tall, and this shows one of the 
dangers of extrapolating the regression line beyond the observed data.
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Figure 13.2 is a plot of SBP versus height for the data shown in Table 13.1. From this 
plot, we can see that there is a slight tendency for the larger values of SBP to be associ-
ated with the larger values of height, but the relationship is not particularly strong. The 
path of the regression line is shown within the range of observations.

We can use the preceding estimates of the population coeffi cients in predicting SBP 
values for the hypothetical data shown in Table 13.1. For example, the predicted value 
of SBP for the fi rst observation in Table 13.1, a girl 36 inches tall, is

61.138 + 0.7688(36) = 88.82  mmHg.

The other predicted SBP values are found in the same way, and they are also shown in 
Table 13.1.

13.1.2   The Variance of Y|X
Before going forward with the use of the regression line in the development of the 
standards, we should examine whether or not the estimated regression line is an improve-
ment over simply using the sample mean as an estimate of the observed values. One 
way of obtaining a feel for this is to examine the sum of squares of deviations of Y from 
Ŷ — that is,

y yi i
i

n

−( )
=
∑ ˆ .2

1

If we subtract and add y– in this expression, we can rewrite this sum of squares as

y y y yi i

i

n

−( ) − −( )[ ]
=
∑ ˆ 2

1

Figure 13.2 Plot of 
systolic blood pressure 
versus height for 50 
girls shown in Table 
13.1.
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and we have not changed the value of the sum of squares. However, this sum of squares 
can be rewritten as
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because the crossproduct terms, (yi − y–)( ŷi − y–), sum to zero. In regression terminology, 
the fi rst sum of squares is called the sum of squares about regression or the residual or 
error sum of squares. The second sum of squares, about the sample mean, is called the 
total sum of squares (corrected for the mean) and the third sum of squares is called the 
sum of squares due to regression. If we rewrite this equation, putting the total sum of 
squares (corrected for the mean) on the left side of the equal sign, we have
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This equation shows the partition of the total sum of squares into two components, the 
sum of squares about regression, and the sum of squares due to regression.

Figure 13.3 is a graph which shows the differences, (yi − y–), (yi − ŷi) and ( ŷi − y–), 
for one yi. In Figure 13.3, the regression line is shown as well as a horizontal line that 
shows the value of the sample mean. We have focused on the last point, the girl who is 
69 inches tall and who has an SBP of 140  mmHg. For this point, the deviation of the 
observed SBP of 140 from the sample mean of 101.5 can be partitioned into two com-
ponents. The fi rst component is the difference between the observed value and 114.2, 
the value predicted from the regression line. The second component is the difference 
between this predicted value and the sample mean. This partitioning cannot be done for 
many of the points, since, for example, the sample mean may be closer to the observed 
point than the regression line is.

Figure 13.3 An 
observed value in 
relation to the 
regression line and the 
sample mean.

Ideally, we would like the sum of squares about the regression line to be close to 
zero. From the last preceding equation, we see that the sum of the square deviations 
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from the regression line must be less than or equal to the sum of the square deviations 
from the sample mean. However, the direct comparison of the sum of squares is not fair, 
since they are based on different degrees of freedom. The sum of squares about the 
sample mean has n − 1 degrees of freedom, as we discussed in the material about the 
variance. Since we estimated two coeffi cients in obtaining the least squares estimator 
of Y, there are thus n − 2 degrees of freedom associated with sum of squares about Ŷ. 
Thus, let us compare s2

Y with s2
Y |X — that is,

y y

n

y y

n

i
i

n

i i
i

n

−( )

−

−( )

−
= =
∑ ∑2

1

2

1

1 2
versus

ˆ

.

If s2
Y |X is much less than s2

Y, then the regression was worthwhile; if not, then we should 
use the sample mean as there appears to be little linear relation between Y and X.

Let us calculate the sample variance of Y and the sample variance of Y, taking X into 
account. The sample variance of Y is
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and the sample variance of Y given X is
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Thus, s2
Y |X is less than s2

Y. The use of the height variable has reduced the sample variance 
from 260.827 to 210.772, about a 20 percent reduction. It appears that the inclusion of 
the height variable has allowed for somewhat better estimation of the SBP values.

13.1.3   The Coeffi cient of Determination (R2)

An additional way of examining whether or not the regression was helpful is to 
divide the sum of squares due to regression by the sum of squares about the mean — 
that is,
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If the regression line provides estimates of the SBP values that closely match the 
observed SBP values, this ratio will be close to one. If the regression line is close to the 
mean line, then this ratio will be close to zero. Hence, the ratio provides a measure that 
varies from 0 to 1, with 0 indicating no linear relation between Y and X, and 1 indicating 
a perfect linear relation between Y and X. This ratio is denoted by R2, and is called the 
coeffi cient of determination. It is a measure of how much of the variation in Y is 
accounted for by X. R2 is also the square of the sample Pearson correlation coeffi cient 
between Y and X.
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For the SBP example, the value of R2 is

12780 10117

12780
0 2084

− = . .

Approximately 21 percent of the variation in SBP is accounted for by height for girls 
between 36 to 69 inches tall. This is not an impressive amount. Almost 80 percent of 
the variation in SBP remains to be explained. Even though this measure of the relation 
between SBP and height is only 21 percent, it is larger than its corresponding value for 
the relation between SBP and age.

The derivation of the R2 term is based on a linear model that has both a b0 and a b1 
term. If the model does not include b0, then a different expression must be used to cal-
culate R2.

The sample Pearson correlation coeffi cient, r, is defi ned as
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and its numerical value is

r =
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. .

If we square r, r2 is 0.2084, which agrees with R2, as it must.

Although, symbolically, R2 is the square of the sample Pearson correlation coeffi cient, 
R2 does not necessarily measure the strength of the linear association between Y and X. 
In correlation analysis, the observed pairs of values of Y and X are obtained by simple 
random sampling from a population. In correlation analysis, we don’t necessarily con-
sider one of the variables to be the dependent variable and the other the independent 
variable. The sample r simply measures the strength of the linear association between 
the two variables. In contrast, linear regression provides a formula that describes the 
linear relation between a dependent variable and an independent variable(s). To discover 
that relationship, we often use stratifi ed random sampling — that is, we select simple 
random samples of Y for specifi ed values of X; however, as Ranney and Thigpen (1981) 
show, the value of R2 depends on the range of the values of X used in the analysis, the 
number of repeated observations at given values of X, and the location of the X values. 
Hence, although symbolically R2 is the square of the correlation coeffi cient between two 
variables, it does not necessarily measure the strength of the linear association between 
the variables. It does refl ect how much of the variation in Y is accounted for by knowl-
edge of X. Korn and Simon provide more on the interpretation of R2 (Korn and Simon 
1991).

There is also a relation between the sample correlation coeffi cient and the estimator 
of b1. From Chapter 3, we had another form for r than the defi ning formula given above 
and it was
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As the preceding relation shows, if the correlation coeffi cient is zero, the slope coeffi -
cient is also zero and vice versa.

13.2   Inference about the Coeffi cients
The parametric approach to testing hypotheses about a parameter requires that we 
know the probability distribution of the sample estimator of the parameter. The standard 
approach to fi nding the probability distributions of the sample estimators of b0 and b1 
is based on the following assumptions.

13.2.1   Assumptions for Inference in Linear Regression

We assume that the yi’s are independent, normally distributed for each value of X, and 
that the normal distributions at the different values of X all have the same variance, s2. 
Figure 13.4 graphically shows these assumptions. The regression line, showing the relation 
between mY |X and X, is graphed as well as the distributions of Y at the selected values of 

Figure 13.4 
Distribution of Y at 
selected values of X.

Inference about the Coeffi cients  357

Ch013-P369492.indd   357 11/4/2006   11:27:50 AM



358  Linear Regression

X. Note that Y is normally distributed at each of the selected X values and that the normal 
distributions have the same shapes — that is, the same variance, s2. The mean of the 
normal distribution, mY |X, is obtained from the regression equation and is b0 + b1X.

In the following, we shall consider the values of the X variable to be fi xed. There are 
two ways that X can be viewed as being fi xed. First, we may have used a stratifi ed 
sample, stratifi ed on height, to select girls with the heights shown in Table 13.1. Since 
we have chosen the values of the height variable, they are viewed as being fi xed. In a 
second way, we consider our results to be conditional on the observed values of X. The 
conditional approach is usually used with simple random samples in which both Y and 
X otherwise would be considered to be random variables. This is the conventional 
approach, and it means that the error or residual term, e , also follows a normal distribu-
tion with mean 0 and variance s2. Note that the least squares estimation of the regression 
coeffi cients did not require this specifi cation of the probability distribution of Y.

Before testing hypotheses about the regression coeffi cients, we should attempt to 
determine whether or not the assumptions just stated are true. We should also examine 
whether or not any single data point is exercising a large infl uence on the estimates of 
the regression coeffi cients. These two issues are discussed in the next section.

13.2.2   Regression Diagnostics

In our brief introduction to regression diagnostics — methods for examining the regres-
sion equation — we consider only two of the many methods that exist. More detail on 
other methods is given in Kleinbaum et al. (1998). The fi rst method we shall present 
involves plotting of the residuals. Plots are used in an attempt to determine whether or 
not the residuals or errors are normally distributed or to see if there are any patterns in 
the residuals. The second method tries to discover the existence of data points that play 
a major role in the estimation of the regression coeffi cients.

Residuals and Standardized Residuals: The sample estimator of ei is the residual 
ei, defi ned as the difference between yi and ŷi, and the ei can be used to examine the 
regression assumptions. Since we are used to dealing with standardized variables, 
people often consider a standardized residual, ei/sY |X, instead of ei itself. The standard-
ized residuals should approximately follow a standard normal distribution if the regres-
sion assumptions are met. Thus, values of the standardized residuals larger than 2.5 or 
less than −2.5 are unusual. Table 13.2 shows these residuals and a quantity called lever-
age (described in the next section) for the data in Table 13.1.

We use the standardized residuals in our examination of the normality assumption. 
Other residuals could also be used for this examination (Kleinbaum 1998). The normal 
scores of the standardized residuals are plotted in Figure 13.5. The normal scores plot 
looks reasonably straight; thus the assumption that the error term is normally distributed 
does not appear to be violated.

If this plot deviates suffi ciently from a straight line to cause us to question the 
assumption of normality, then it may be necessary to consider a transformation of the 
dependent variable. There are a number of mathematical functions which can be used 
to transform nonnormally distributed data to normality (Kleinbaum 1998; Lin and 
Vonesh 1989; Miller 1984).
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It is also of interest to plot the standardized residuals against the values of the X 
variable(s). If any pattern is observed in this plot, it suggests that another term involving 
the X variable — for example, X 2, might be needed in the model. Figure 13.6 shows the 
plot of the standardized residuals versus the height variable. No pattern is immediately 
obvious from an examination of this plot. Again, there is no evidence to cause us to 
reject this model. If the data have been collected in time sequence, it is also useful to 
examine a plot of the residuals against time.

Leverage: The predicted values of Y are found from

b̂0 + b̂1X

Table 13.2 Residuals and leverage for the data in Table 13.1.

  Standardized Leverage   Standardized Leverage
Y Residual Residual hi Y Residual Residual hi

105 16.1848 1.16253 0.08041 92 −10.6532 −0.74143 0.02049
 90 0.4161 0.02977 0.07331 80 −22.6532 −1.57659 0.02049
 82 −8.3527 −0.59552 0.06665 88 −14.6532 −1.01982 0.02049
 96 5.6473 0.40264 0.06665 104 0.5781 0.04025 0.02138
 82 −9.1215 −0.64818 0.06044 100 −4.1907 −0.29199 0.02271
 74 −17.1215 −1.21667 0.06044 126 21.0405 1.46735 0.02449
104 12.1097 0.85790 0.05467 108 2.2717 0.15861 0.02671
100 8.1097 0.57452 0.05467 106 −0.4971 −0.03475 0.02937
 80 −12.6590 −0.89430 0.04934 98 −8.4971 −0.59407 0.02937
 98 4.5722 0.32218 0.04446 94 −12.4971 −0.87373 0.02937
 96 1.8034 0.12678 0.04002 88 −19.2658 −1.34912 0.03248
 86 −8.9654 −0.62897 0.03603 110 2.7342 0.19146 0.03248
 88 −6.9654 −0.48866 0.03603 124 16.7342 1.17184 0.03248
128 33.0346 2.31756 0.03603 86 −22.0346 −1.54585 0.03603
118 22.2658 1.55920 0.03248 120 11.9654 0.83944 0.03603
 90 −6.5029 −0.45465 0.02937 112 3.1966 0.22473 0.04002
108 9.9595 0.69457 0.02449 100 −9.5722 −0.67450 0.04446
120 21.9595 1.53144 0.02449 122 11.6590 0.82366 0.04934
114 15.1907 1.05843 0.02271 122 11.6590 0.82366 0.04934
 78 −20.8093 −1.44991 0.02271 110 −1.1097 −0.07862 0.05467
116 16.4219 1.14344 0.02138 124 12.8903 0.91320 0.05467
 74 −25.5781 −1.78096 0.02138 122 10.1215 0.71924 0.06044
 80 −20.3468 −1.41608 0.02049 94 −18.6473 −1.32950 0.06665
 98 −3.1156 −0.21679 0.02005 110 −2.6473 −0.18874 0.06665
 90 −11.8844 −0.82693 0.02005 140 25.8152 1.85426 0.08041

Figure 13.5 Normal 
scores plot of the 
standardized residuals 
from the linear 
regression of systolic 
blood pressure on 
height.
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360  Linear Regression

where the estimators of b0 and b1 are linear combinations of the observed values of Y. 
Thus, the predicted values of Y are also linear combinations of the observed values of 
Y. An expression for the predicted value of yi refl ecting this relation is

ŷi = hi1 y1 + hi2 y2 +  .  .  .  + hii yi +  .  .  .  + hin yn

where hij is the coeffi cient of yj in the expression for ŷi. For simplicity, hii is denoted by 
hi. The effect of yi on its predicted value is denoted by hi and this effect is called lever-
age. Leverage shows how much change there is in the predicted value of yi per unit 
change in yi. The possible values of the hi are greater than or equal to zero and less than 
or equal to one. The average value of the leverages is the number of estimated coeffi -
cients in the regression equation divided by the sample size. In our problem, we esti-
mated two coeffi cients and there were 50 observations. Thus the average value of the 
leverages is 0.04 (= 2/50). If any of the leverages are large — some statisticians consider 
large to be greater than twice the average leverage and others say greater than three 
times the average — the points with these large leverages should be examined. Perhaps 
there was a mistake in recording the values or there is something unique about the points 
that should be examined. If there is nothing wrong or unusual with the points, it is useful 
to perform the regression again excluding these points. A comparison of the two regres-
sion equations can be made, and the effect of the excluded points can be observed.

In our problem, we can see from Table 13.2 that there are two points, the fi rst and 
the last, with the larger leverages. Both of these points had leverages slightly larger than 
twice the average leverage value. The fi rst girl had a large SBP value relative to her 
height, and the last girl had the highest SBP value. At this stage, we will assume that 
there was no error in recording or entering the data. We could perform the regression 
again and see if there is much difference in the results. However, since the leverages 
are only slightly larger than twice the average leverage, we shall not perform any addi-
tional regressions.

Based on these looks at the data, we have no reason to doubt the appropriateness of 
the regression assumptions and there do not appear to be any really unusual data points 
that would cause us concern. Therefore, it is appropriate to move into the inferential 
part of the analysis, that is, to test hypotheses and to form confi dence and prediction 
intervals. We begin the inferential stage with consideration of the slope coeffi cient.

Figure 13.6 Plot of 
standardized residuals 
versus height.
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13.2.3   The Slope Coeffi cient

Even though there is an indication of a linear relation between SBP and height — that 
is, it appears that b1 is not zero — we do not know if b1 is statistically signifi cantly dif-
ferent from zero. To determine this, we must estimate the standard error of b̂1, which 
is used in both confi dence intervals and tests of hypotheses about b1. To form the con-
fi dence interval about b1 or to test a hypothesis about it, we also must know the probabil-
ity distribution of b̂1.

Since we are assuming that Y is normally distributed, this means that b̂1, a linear 
combination of the observed Y values, is also normally distributed. Therefore, to form 
a confi dence interval or to test a hypothesis about b1, we now need to know the standard 
error of its estimator. The standard error (s.e.) of b̂1 is

s e

x xi
i

n
. . β σ

1

2

1

( ) =
−( )

=
∑

and, because s is usually unknown, the standard error is estimated by substituting sY |X 
for s. From the above equation, we can see that the magnitude of the standard error 
depends on the variability in the X variable. Larger variability decreases the standard 
error of b̂1. Thus, we should be sure to include some values of X at the extremes of X 
over the range of interest.

To test the hypothesis that b1 is equal to b10 — that is,

H0: b1 = b10,

we use the statistic

t
est s e

x x

s

i

Y X

= −
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=
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ˆ
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β β
β
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If s were known, the test statistic, using s instead of sY |X, would follow the standard 
normal distribution; however, s is usually unknown, and the test statistic using sY |X 

follows the t distribution with n − 2 degrees of freedom. The degrees of freedom param-
eter has the value of n − 2, since we have estimated two coeffi cients, b0 and b1.

If the alternative hypothesis is

Ha: b1 ≠ b10

the rejection region consists of values of t less than or equal to tn−2,a /2 or greater than or 
equal to tn−2,1−a /2.

The hypothesis usually of interest is that b10 is zero — that is, there is no linear rela-
tion between Y and X. If, however, our study is one attempting to replicate previous 
fi ndings, we may wish to determine if our slope coeffi cient is the same as that reported 
in the original work. Then b10 will be set equal to the previously reported value. Let us 
test the hypothesis that there is no linear relation between SBP and height versus the 
alternative hypothesis that there is some linear relation at the 0.05 signifi cance level.

The test statistic, t, is
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362  Linear Regression

t
x x

s

i

X Y

=
−( ) −( )∑β̂ β1 10

2

which is

t = −( )
=0 7688 0 4506 5

14 518
3 555

. .

.
. .

This value is compared with −2.01 (= t48,0.025) and 2.01 (= t48,0.975). Since 3.555 is greater 
than 2.01, we reject the hypothesis of no linear relation between SBP and height. The 
p-value of this test is approximately 0.001.

The (1 − a)*100 percent confi dence interval for b1 is formed by

b̂1 ± tn−2,1−a /2 * est. s.e. (b̂1)

which is

ˆ .β α1 2 1 2
2

± ∗
−( )

− −

∑
t

s

x x
n

Y X

i

,

The 95 percent confi dence interval for b1 is found using

0 7688 2 01
14 518

4506 5
0 7688 0 4347. .

.

.
. .± = ±

and this gives a confi dence interval from 0.3341 to 1.2035. The confi dence interval is 
consistent with the test given above. Since zero is not contained in the confi dence inter-
val for b1, there appears to be a linear relation between SBP and height. Since there is 
evidence to suggest that b1 is not zero, this also means that the correlation coeffi cient 
between Y and X is not zero.

13.2.4   The Y-intercept

It is also possible to form confi dence intervals and to test hypotheses about b0, although 
these are usually of less interest than those for b1. The location of the Y intercept is 
relatively unimportant compared to determining whether or not there is a relation 
between the dependent and independent variables. However, sometimes we wish to 
compare whether or not both our coeffi cients — slope and Y intercept — agree with 
those presented in the literature. In this case, we are interested in examining b0 as well 
as b1.

Since the estimator of b0 is also a linear combination of the observed values of the 
normally distributed dependent variable, b̂0 also follows a normal distribution. The 
standard error of b̂0 is estimated by

est s e s
x

n x x
Y X

i

i

. . . .β0

2

2( ) =
−( )

∑
∑

The hypothesis of interest is
H0: b0 = b00
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versus either a one- or two-sided alternative hypothesis. The test statistic for this hypoth-
esis is

t
s x n x xY X i i

= −

−( )[ ]∑ ∑
β̂ β0 00

2 2

and this is compared to ±tn−2,1−a /2 for the two-sided alternative hypothesis. If the alterna-
tive hypothesis is that b0 is greater than b00, we reject the null hypothesis in favor of 
the alternative when t is greater than tn−2,1−a . If the alternative hypothesis is that b0 is 
less than b00, we reject the null hypothesis in favor of the alternative when t is less than 
−tn−2,1−a .

The (1 − a /2)*100 percent confi dence interval for b0 is given by

ˆ .β α0 2 1 2

2

2
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−( )
− −

∑
∑

t s
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,

Let us form the 99 percent confi dence interval for b0 for these SBP data. The 0.995 
value of the t distribution with 48 degrees of freedom is approximately 2.68. Therefore, 
the confi dence interval is found from the following calculations

61 14 2 68 14 52
142319

50 4506 5
61 14 30 93. . .

.
. .± ( )

( )
= ±

which gives an interval from 30.21 to 92.07, a wide interval.

13.2.5   An ANOVA Table Summary

Table 13.3 shows the information required to test the hypothesis of no relation between 
the dependent and independent variables in an ANOVA table similar to that used in 
Chapter 12. The test statistic for the hypothesis of no linear relation between the depen-
dent and independent variables is the F ratio, which is distributed as an F variable with 
1 and n − 2 degrees of freedom. Large values of the F ratio cause us to reject the null 
hypothesis of no linear relation in favor of the alternative hypothesis of a linear relation. 
The F statistic is the ratio of the mean square due to regression to the mean square about 
regression (mean square error or residual mean square). The degrees of freedom param-
eters for the F ratio come from the two mean squares involved in the ratio. The degrees 
of freedom due to regression is the number of parameters estimated minus one. The 
degrees of freedom associated with the about regression source of variation is the sample 
size minus the number of coeffi cients estimated in the regression model.

Table 13.3 An ANOVA table for the simple linear regression model.

 Degrees of Sum of
Source of Variation Freedom Squares Mean Square F Ratioa

Due to Regression 1 Σ(ŷi − y–)2 Σ(ŷi − y–)2/1 MSR/MSE
About Regression or Error n − 2 Σ(yi − ŷi)2 Σ(yi − ŷi)2/(n − 2)
Corrected Total n − 1 Σ(yi − y–)2

aMSR is the mean square due to regression, and MSE is the mean square error term.
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364  Linear Regression

The ANOVA table for the SBP and height data is shown in Table 13.4. If we perform 
this test at the 0.05 signifi cance level, we will compare the calculated F ratio to F1,48,0.95, 
which is approximately 4.04. Since the calculated value, 12.63, is greater than the tabu-
lated value, 4.04, we reject the null hypothesis in favor of the alternative hypothesis. 
There appears to be a linear relation between SBP and height at the 0.05 signifi cance 
level.

Note that if we take the square root of 12.63, we obtain 3.554. With allowance for 
rounding, we have obtained the value of the t statistic calculated in the section for testing 
the hypothesis that b1 is zero. This equality is additional verifi cation of the relation, 
pointed out in Chapter 12, between the t and F statistics. An F statistic with 1 and n − p 
degrees of freedom is the square of the t statistic with n − p degrees of freedom. Exami-
nation of the t and F tables shows that t2

n−p,1−a /2 equals F1,n−p,1−a . Hence, we have two 
equivalent ways of testing whether or not the dependent and independent variables are 
linearly related at a given signifi cance level. As we shall see in the multiple regression 
material, the F statistic directly extends to simultaneously testing several variables, 
whereas the t can be used with only one variable at a time.

These calculations associated with regression analysis require much time, care, and 
effort. However, they can be quickly and accurately performed with computer packages 
(see Program Note 13.1 on the website).

13.3   Interval Estimation for mY|X and Y|X
Even though the relation between SBP and height is not impressive, we will continue 
with the idea of developing a height-based standard for SBP for children. We would be 
much more comfortable doing this if the relation between height and SBP were stronger. 
The height-based standards that we shall create are the SBP levels such that 95 percent 
of the girls of a given height have lower SBP and 5 percent have a higher SBP. This 
standard is not based on the occurrence of any disease or other undesirable property. 
When using a standard created in this manner, approximately 5 percent of the girls will 
be said to have undesirably high SBP, regardless of whether or not that is really a 
problem.

The standard will be based on a one-sided prediction interval for the SBP variable. 
Also of interest is the confi dence interval for the SBP variable and we shall consider 
the confi dence interval fi rst.

13.3.1   Confi dence Interval for mY |X

The regression line provides estimates of the mean of the dependent variable for differ-
ent values of the independent variable. How confi dent are we about these estimates or 

Table 13.4 ANOVA table for the regression of SBP on height.

Source of Variation Degrees of Freedom Sum of Squares Mean Square F Ratio

Due to Regression  1 2,663 2,663 12.63
About Regression or Error 48 10,117 210.77

Corrected Total 49 12,780
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predicted values? The confi dence interval provides one way of answering this question. 
To create the confi dence interval, we require knowledge of the distribution of Ŷ and also 
an estimate of its standard error.

Since the predicted value of mY |X at a given value of x, say xk, is also a linear combina-
tion of normal values, it is normally distributed. Its standard error is estimated by

est s e s
n

x x

x x
Y X Y X

k

i
k

. . . .μ( ) = + −( )

−( )∑
1 2

2

The estimated standard error increases with increases in the distance between xk and x–, 
and there is a unique estimate of the standard error for each xk.

Because we are using sY |X to estimate s, we must use the t distribution in place of the 
normal in the formation of the confi dence interval. The confi dence interval for mY |X has 
the form

m̂Y |X ± tn−2,1−a /2est. s.e. (m̂Y |X).

Figure 13.7 shows the 95 percent confi dence interval for SBP as a function of height. 
As we can see from the graph, the confi dence interval widens as the values of height 
move away from the mean of the height variable. This is in accord with the expression 
for the confi dence interval, which has the term (xk − x–)2 in the numerator. We are thus 
less sure of our prediction for the extreme values of the independent variable. The con-
fi dence interval is about 17  mmHg wide for girls 35 or 70 inches tall and narrows to 
about 8  mmHg for girls about 50 to 55 inches tall.

Figure 13.7 Ninety-fi ve 
percent confi dence 
interval for mY|X.
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366  Linear Regression

13.3.2   Prediction Interval for Y|X
In the preceding section, we saw how to form the confi dence interval for the mean of 
SBP for a height value. In this section, we shall form the prediction interval — the 
interval for a single observation. The prediction interval is of interest to a physician 
because the physician is examining a single person, not an entire community. How does 
the person’s SBP value relate to the standard?

As we saw in Chapter 7 in the material on intervals based on the normal distribution, 
the prediction interval is wider than the corresponding confi dence interval because we 
must add the individual variation about the mean to the mean’s variation. Similarly, the 
formula for the prediction interval based on the regression equation adds the individual 
variation to the mean’s variation. Thus, the estimated standard error for a single obser-
vation is

est.s.e. ˆ .y s
n

x x

x x
k Y X

k

i

( ) = + + −( )

−( )∑
1

1 2

2

The corresponding two-sided (1 − a)*100 percent prediction interval is

ŷk ± tn−2,1−a /2 est.  s.e. (ŷk).

Figure 13.8 shows the 95 percent prediction interval for the data in Table 13.1. The pre-
diction interval is much wider than the corresponding confi dence interval because of 
the addition of the individual variation in the standard error term. The prediction inter-
val here is about 60  mmHg wide. Note that most of the data points are within the pre-
diction interval band. Inclusion of the individual variation term has greatly reduced the 
effect of the (xk − x–)2 term in the estimated standard error in this example. The upper 

Figure 13.8 Ninety-fi ve 
percent prediction 
interval for yk.
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and lower limits are essentially straight lines, in contrast to the shape of the upper and 
lower limits of the confi dence interval.

Software packages can be used to perform the calculations necessary to create the 
95 percent confi dence and prediction intervals (see Program Note 13.2 on the 
website).

Example 13.1

We apply the prediction interval to develop the standard for systolic blood pressure. 
Since we are only concerned about systolic blood pressures that may be too high, 
we shall use a one-sided prediction interval in the creation of the height-based stan-
dard for SBP for girls. The upper (1 − a)  *  100 percent prediction interval for SBP 
is found from

ŷk ± tn−2,1−a est. s.e.( ŷk).

Because the standard is the value such that 95 percent of the SBP values fall below 
it and 5 percent of the values are greater than it, we shall use the upper 95 percent 
prediction interval to obtain the standard.

The data shown in Figure 13.8 can be used to help create the height-based stan-
dards for SBP. The difference between the one- and two-sided interval is the use of 
tn−2,1−a in place of tn−2,1−a /2. Thus, the amount to be added to ŷk for the upper one-sided 
interval is simply 0.834 (= t48,0.95/t48,0.975) times the amount added for the two-sided 
interval. To fi nd the amount added for the two-sided interval, we subtract the pre-
dicted SBP value shown from the upper limit of the 95 percent prediction interval. 
For example, for a girl 35 inches tall, the amount added, using the two-sided interval, 
is found by subtracting 88.05 (predicted value) from 118.50 (upper limit of the two-
sided prediction interval). This yields a difference of 30.45  mmHg. If we multiply 
this difference by 0.834, we have the amount to add to the 88.05 value. Thus, the 
standard for a girl 35 inches tall is

0.834 (118.50 − 88.05) + 88.05 = 113.45  mmHg.

Table 13.5 shows these calculations and the height-based standards for SBP for girls. 
As just shown, the calculations in Table 13.5 consist of taking column 2 minus 

Table 13.5 Creation of height-based standards for SBP (mmHg) for girls.

xk Upper Limit of   Difference
(Inches) Prediction Interval ŷk Difference Times 0.834 Standard
(1) (2) (3) (4) (5) (6)

35 118.50 88.05 30.45 25.40 113.45
40 121.87 91.89 29.98 25.00 116.89
45 125.40 95.93 29.67 24.74 120.67
50 129.09 99.58 29.51 24.61 124.19
55 132.93 103.42 29.51 24.61 128.03
60 136.93 107.27 29.66 24.74 132.01
65 141.09 111.11 29.98 25.00 136.11
70 145.41 114.95 30.46 25.40 140.35
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So far we have focused on a single independent variable. In the next section, we 
consider multiple independent variables.

13.4   Multiple Linear Regression
For many chronic diseases, there is no one single cause associated with the occurrence 
of the disease. There are many factors, called risk factors, that play a role in the devel-
opment of the disease. In the study of the occurrence of air pollution, there are many 
factors — for example, wind, temperature, and time of day — that must be considered. 
In comparing mortality rates for hospitals, factors such as the mean age of the patients, 
severity of the diseases seen, and the percentage of patients admitted from the emer-
gency room must be taken into account in the analysis. As these examples suggest, it 
is uncommon for an analysis to include only one independent variable. Therefore, in 
this section we introduce multiple linear regression, a method for examining the relation 
between one normally distributed dependent variable and more than one continuous 
independent variable. We also extend the mode to include categorical independent 
variables.

13.4.1   The Multiple Linear Regression Model

The equation showing the hypothesized relation between the dependent and (p − 1) 
independent variables is

yi = b0 + b1x1i + b2 x2i +  .  .  .  + bp−1xp−1,i + ei.

The coeffi cient bi describes how much change there is in the dependent variable when 
the ith independent variable changes by one unit and the other independent variables 

column 3. This is stored in column 4. Column 5 contains 0.834 times column 4. The 
standard, column 6, is the sum of column 3 with column 5.

The upper one-sided prediction interval is one way of creating height-based stan-
dards for SBP. It has the advantage over simply using the observed 95th percentiles 
of the SBP at the different heights in that it does not require such a large sample size 
to achieve the same precision. If SBP is really linearly related to height, standards 
based on the prediction interval also smooth out random fl uctuations that may be 
found in considering each height separately.

The standards developed here are illustrative of the procedure. If one were going 
to develop standards, a larger sample size would be required. We would also prefer 
to use additional variables or another variable to increase the amount of variation in 
the SBP that is accounted for by the independent variable(s). In addition, as we just 
stated, the rationale for having standards for blood pressure in children is much 
weaker than that for having standards in adults. In adults, there is a direct linkage 
between high blood pressure and disease, whereas in children no such linkage exists. 
Additionally, the evidence that relatively high blood pressure in children carries over 
into adulthood is inconclusive. Use of the 95th percentile or other percentiles as the 
basis of a standard implies that some children will be identifi ed as having a problem 
when none may exist.
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are held constant. Again, the key hypothesis is whether or not bi is equal to zero. If bi 
is equal to zero, we probably would drop the corresponding Xi from the equation because 
there is no linear relation between Xi and the dependent variable once the other inde-
pendent variables are taken into account.

The regression coeffi cients of ( p − 1) independent variables and the intercept can be 
estimated by the least squares method, the same approach we used in the simple model 
presented above. We are also making the same assumptions — independence, normality, 
and constant variance — about the dependent variable and the error term in this model 
as we did in the simple linear regression model. We can also partition the sums of 
squares for the multiple regression model similarly to the partition used in the simple 
linear regression situation. The corresponding ANOVA table is

Source DF Sum of Squares Mean Square F-ratio

Regression p − 1 ŷ y SSRi −( ) =∑ 2  SSR/(p − 1) = MSR MSR/MSE

Residual n − p y y SSEi i−( ) =∑ ˆ 2  SSE/(n − p) = MSE

Total n − 1 y yi −( )∑ 2

and the overall F ratio now tests the hypothesis that the p − 1 regression coeffi cients 
(excluding the intercept) are equal to zero.

A goal of multiple regression is to obtain a small set of independent variables that makes 
sense substantively and that does a reasonable job in accounting for the variation in the 
dependent variable. Often we have a large number of variables as candidates for the inde-
pendent variables, and our job is to reduce that larger set to a parsimonious set of variables. 
As we just saw, we do not want to retain a variable in the equation if it is not making a 
contribution. Inclusion of redundant or noncontributing variables increases the standard 
errors of the other variables and may also make it more diffi cult to discern the true rela-
tionship among the variables. A number of approaches have been developed to aid in the 
selection of the independent variables, and we show a few of these approaches.

The calculations and the details of multiple linear regression are much more than we 
can cover in this text. For more information on this topic, see books by Kleinbaum, 
Kupper, and Muller and by Draper and Smith, both excellent texts that focus on linear 
regression methods. We consider examples for the use of multiple linear regression 
based on NHANES III sample data that are shown in Table 13.6.

13.4.2   Specifi cation of a Multiple Regression Model

There are no fi rm sample size requirements for performing a multiple regression analy-
sis. However, a reasonable guideline is that the sample size should be at least 10 times 
as large as the number of independent variables to be used in the fi nal multiple linear 
regression equation. In our example, there are 50 observations, and we will probably 
use no more than three independent variables in the fi nal regression equation. Hence, 
our sample size meets the guideline, assuming that we do not add interaction terms or 
higher-order terms of the three independent variables.

Before beginning any formal analysis, it is highly recommend that we look at 
our data to see if we detect any possible problems or questionable data points. The 
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descriptive statistics, such as the minimum and maximum, along with different graphi-
cal procedures, such as the box plot, are certainly very useful. A simple examination 
of the data in Table 13.6 fi nds that there are two people with zero years of education. 
One of these people is 26 years old and the other is 79 years old. Is it possible that 
someone 26 years old didn’t go to school at all? It is possible but highly unlikely. Before 

Table 13.6 Adult (≥18 years of age) sample data from NHANES III, Phase II (1991–1994).

Row Racea Sexb Agec Educationd Heighte Weightf Smokeg SBPh BMIi

 1 1 1 28 16 68 160 7 111 24.33
 2 1 1 26 12 68 165 1 101 25.09
 3 2 2 31 15 68 175 1 120 26.61
 4 2 1 18 12 76 265 7 158 32.26
 5 1 1 50 17 67 145 1 125 22.71
 6 2 1 42 12 69 247 1 166 36.48
 7 1 2 20 12 66 156 7 114 25.18
 8 1 1 29 12 76 180 1 143 21.91
 9 1 2 35 12 63 166 2 111 29.41
10 1 1 47 16 66 169 1 133 27.28
11 1 2 20 14 69 120 7 95 17.72
12 1 2 33 16 68 133 7 113 20.22
13 4 1 24 13 71 185 7 128 25.80
14 1 1 28 14 72 150 1 110 20.34
15 1 2 32 8 61 126 1 117 23.81
16 2 1 21 10 68 190 1 112 28.89
17 1 1 28 17 71 150 7 110 20.92
18 1 2 60 12 61 130 7 117 24.56
19 1 1 55 12 66 215 2 142 34.70
20 1 2 74 12 65 130 7 105 21.63
21 1 2 38 16 68 126 7 94 19.16
22 1 1 26 14 66 160 2 131 25.82
23 1 1 52  9 74 328 2 128 42.11
24 1 2 25 16 69 125 7  93 18.46
25 1 2 24 12 67 133 1 103 20.83
26 1 2 26 16 59 105 1 114 21.21
27 1 2 51 13 64 119 7 130 20.43
28 2 2 29 16 62  98 7 105 17.92
29 4 1 26  0 64 150 7 117 25.75
30 1 2 60 12 64 175 1 124 30.04
31 1 1 22  9 70 190 1 122 27.26
32 1 2 19 12 65 125 7 112 20.80
33 3 1 39 12 73 210 1 135 27.71
34 3 2 77  4 62 138 7 150 25.24
35 1 1 39 12 73 230 2 125 30.34
36 1 1 40 11 69 170 1 126 25.10
37 1 2 44 13 62 115 7 99 21.03
38 3 2 27  9 61 140 7 114 26.45
39 1 1 29 14 73 220 7 139 29.03
40 1 2 78 11 63 110 7 150 19.49
41 1 1 62 13 65 208 7 112 34.61
42 1 1 22 10 71 125 1 127 17.43
43 1 2 37 11 64 176 7 125 30.21
44 1 1 38 17 72 195 7 136 26.45
45 3 1 22 12 65 140 7 108 23.30
46 3 1 79  0 61 125 2 156 23.62
47 1 2 24 12 62 146 7 108 26.70
48 1 2 32 13 67 141 2 105 22.08
49 1 1 42 16 70 192 7 121 27.55
50 1 1 42 14 68 185 7 126 28.13
a(1 = white, 2 = black, 3 = Hispanic, 4 = other); b(1 = male; 2 = female); cAge in years; dNumber of 
years of education; eHeight (inches); fWeight (pounds); g(1 = current smoker, 2 = never, 7 = 
previous); hSystolic blood pressure (mmHg); iBody mass index
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using the education variable in any analysis, we should try to determine more about 
these values.

We consider building a model for SBP based on weight, age, and height. Before 
starting with the multiple regression analysis, it may be helpful to examine the relation-
ship among these variables using a scatterplot matrix shown in Figure 13.9. It is essen-
tially a grid of scatterplots for each pair of variables. Such a display is often useful in 
assessing the general relationships between the variables and in identifying possible 
outliers. The individual relationships of SBP to each of the explanatory variables shown 
in the fi rst column of the scatterplot matrix do not appear to be particularly impressive, 
apart perhaps from the weight variable.

Figure 13.9 Scatterplot 
matrix for systolic 
blood pressure, weight, 
age, and height.

Table 13.7 Correlations among systolic blood pressure, weight, age, and 
height for 50 adults in Table 13.6.

 Systolic Blood Pressure Weight Age

Weight 0.465
Age 0.393 −0.004
Height 0.214 0.636 −0.327

Multiple Linear Regression  371

It may also be helpful to examine the correlation among the variables under consid-
eration. The simple correlation coeffi cients among these variables can be represented 
in the format shown in Table 13.7. The correlation between SBP and weight is 0.465, 
the largest of the correlations between SBP and any of the variables. The correlation 
between height and weight is 0.636, the largest correlation in this table. It is clear from 
these estimates of the correlations among these three independent variables that they 
are not really independent of one another. We prefer the use of the term predictor vari-
ables, but the term independent variables is so widely accepted that it is unlikely to be 
changed.

In this multiple regression situation, we have three variables that are candidates for 
inclusion in the multiple linear regression equation to help account for the variation in 
SBP. As just mentioned, we wish to obtain a parsimonious set of independent variables 
that account for much of the variation in SBP. We shall use a stepwise regression pro-
cedure and an all possible regressions procedure to demonstrate two approaches to 
selecting the independent variables to be included in the fi nal regression model.
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There are many varieties of stepwise regression, and we shall consider forward step-
wise regression. In forward stepwise regression, independent variables are added to the 
equation in steps, one per each step. The fi rst variable to be added to the equation is the 
independent variable with the highest correlation with the dependent variable, provided 
that the correlation is high enough. The analyst provides the level that is used to deter-
mine whether or not the correlation is high enough. Instead of actually using the value 
of the correlation coeffi cient, the criterion for inclusion into the model is expressed in 
terms of the signifi cance levels of the F ratio for the test that the regression coeffi cient 
is zero.

After the fi rst variable is entered, the next variable to enter the model is the one that 
has the highest correlation with the residuals from the earlier model. This variable must 
also satisfy the signifi cance level of the F ratio requirement for inclusion. This process 
continues in this stepwise fashion, and an independent variable may be added or deleted 
at each step. An independent variable that had been added previously may be deleted 
from the model if, after the inclusion of other variables, it no longer meets the required 
F ratio.

Table 13.8 shows the results of applying the forward stepwise regression procedure 
to our example. In the stepwise output, we see that the weight variable is the independent 
variable that entered the model fi rst. It is highly signifi cant with a t-value of 3.64, and 
the R2 for the model is 21.61 percent. In the second step the age variable is added to the 
model. The default signifi cance level of the F ratio for adding or deleting a variable is 
0.15. The age variable is also highly signifi cant with a t-value of 3.42 and as a result the 
R2 value increased to 37.23 percent. Thus, this is the model selected by the forward 
stepwise process.

Table 13.8 Forward stepwise regression: 
Systolic blood pressure regressed on weight, 
age, and height.

Predictor Step 1 Step 2

Constant 92.50 77.18
Weight 0.177 0.177
 (t-value) (3.64) (4.04)
 (p-value) (0.001) (<0.001)
Age  0.41
 (t-value)  (3.42)
 (p-value)  (0.001)
 SY|X 15.1 13.7
 R2 21.61 37.23
 Adjusted R2 19.98 34.55
 Cp 11.8 2.3

In Table 13.8 there are four different statistics shown: R2, adjusted R2, Cp, and sY |X. 
Adjusted R2 is similar to R2, but it takes the number of variables in the equation into 
account. If a variable is added to the equation, but its associated F ratio is less than one, 
the adjusted R2 will decrease. In this sense, the adjusted R2 is a better measure than R2. 
One minor problem with adjusted R2 is that it can be slightly less than zero. The formula 
for calculating the adjusted R2 is

Adjusted R R
n

n p
p p
2 21 1= − −( )

−
⎛
⎝

⎞
⎠
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where R2
p is the coeffi cient of determination for a model with p coeffi cients.

The statistic Cp was suggested by Mallows (1973) as a possible alternative criterion 
for selecting variables. It is defi ned as

C
SSE

s
n pp

p= − −( )
2

2

where s2 is the mean square error from the regression including all the independent 
variables under consideration and SSEp is the residual sum of squares for a model that 
includes a given subset of p − 1 independent variables. It is generally recommended that 
we choose the model where Cp fi rst approaches p.

The all possible regression procedure in effect considers all possible regressions 
with one independent variable, with two independent variables, with three indepen-
dent variables, and so on, and it provides a summary report of the results for the 
“best” models. “Best” here is defi ned in statistical terms, but the actual determina-
tion of what is best must use substantive knowledge as well as statistical measures. 
Table 13.9 shows the results of applying the all possible regression procedure to our 
example.

Table 13.9 All possible (best subsets) regression: Systolic blood pressure regressed on weight, age, 
and height.

Number of  Adjusted Variables Entered

Variables Entered R2 R2 Cp SY |X Weight Age Height

1 21.6 20.0 11.8 15.110 X
1 15.5 13.7 16.4 15.692  X
2 37.2 34.6 2.3 13.665 X X
2 28.6 25.6 8.7 14.573 X  X
3 37.7 33.6 4.0 13.764 X X X

Multiple Linear Regression  373

From the all possible regressions output, we see that the model including weight was 
the best model with one independent variable. The second best model, with only one 
independent variable, used the age variable. The best two-independent-variable model 
used weight and age. The second best model, with two independent variables, used 
weight and height. The only three-independent-variable model has the highest R2 value, 
but its adjusted R2 is less than that for the best two independent variable model. Thus, 
on statistical grounds, we should select the model with weight and age as independent 
variables. It has the highest adjusted R2 and the lowest value of sY|X. It also has Cp value 
closest to 2.

Again, these automatic selection procedures should be used with caution. We cannot 
treat the selected subset as containing the only variables that have an effect on the 
dependent variable. The excluded variables may still be important when different vari-
ables are in the model. Often it is necessary to force certain variables to be included in 
the model based on substantive considerations.

We also must realize that, since we are performing numerous tests, the p-values now 
only refl ect the relative importance of the variables instead of the actual signifi cance 
level associated with a variable.
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13.4.3   Parameter Estimates, ANOVA, and Diagnostics

Let us now proceed to the multiple regression analysis with the full three-independent-
variable model and compare it with the selected model that uses weight and age. Table 
13.10 shows the regression with the three independent variables. The main features of 
interest are the tests of hypotheses and the parameter estimates. In the ANOVA table 
the F ratio of 9.27 is the value of the test statistic for the hypothesis that all the coeffi -
cients are simultaneously zero. Since its associated p-value is <0.001, we reject the 
hypothesis in favor of the alternative hypothesis that at least one of the coeffi cients is 
not zero. In general, however, this overall test is of little real interest because it is 
unlikely that none of the independent variables are related to the response variable. Of 
greater interest is the examination of the regression coeffi cients to see which indepen-
dent variables are related to the response variable. In this model with the three inde-
pendent variables, weight and age are statistically signifi cant, but height is not, as shown 
by the t-values and the associated p-values. We should remove the statistically unimport-
ant variables from the model unless there is a substantive reason to retain them. In fi tting 
the model with the statistically unimportant variables eliminated, the estimated coeffi -
cients and standard errors will likely change in value due to the lack of independence 
of the predictor variables.

Table 13.10 also shows the sequential sum of squares. These sums of squares show 
the added contribution of the variables when they are entered in the order specifi ed in 
the model. The contribution of height is very small after weight and age are already 
in the model. The table also shows VIF (variance infl ation factor), and this term is dis-
cussed in the next section.

Table 13.10 Multiple regression analysis I: Systolic blood pressure regressed on weight, age, 
and height.

Predictor Coef SE Coef T p VIF

Constant 53.96 41.54 1.30 0.200
Weight 0.15435 0.05969 2.59 0.013 1.8
Age 0.4381 0.1319 3.32 0.002 1.2
Height 0.3845 0.6725 0.57 0.570 2.0

S = 13.76 R − Sq = 37.7%  R − Sq(adj) = 33.6%

Analysis of Variance:

Source DF SS MS F p

Regression 3 5,266.5 1,755.5 9.27 <0.001
Residual Error 46 8,714.4 189.4
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
Height 1 61.9

Table 13.11 shows the multiple regression analysis of the model selected by the vari-
able selection procedures. In this model, the coeffi cients for the weight and age variables 
are highly signifi cant with the t-values of 4.04 and 3.42, respectively, and an F ratio for 
the overall test of the model is 13.94. The estimated coeffi cient for the weight variable 
(0.177) increased slightly from its value in the three-independent-variable model (0.154), 
and its standard error has decreased to 0.044 from 0.060 in the previous model. Inclu-
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sion of an unnecessary term in the three-independent-variable model has caused the 
increase in the estimated standard errors and thus makes it harder to discern the signifi -
cance of any of the independent variables.

The R2 statistic indicates that the selected model is not able to account for the 
great majority of the variation in SBP. Much work needs to be done to discover 
these additional sources of variation before standards are created. It is likely that the 
effects of weight and age would be altered if we include other variables that have 
not been considered in the current models. A key message is that conclusions drawn 
about the importance of independent variables depend on the model that is being 
considered.

Having arrived at a fi nal multiple regression model for the data set, it is important 
to go further and check the assumptions we made in selecting the important variables. 
Most useful at this stage is an examination of residuals from the fi tted model. Among 
many regression diagnostics now available in computer packages, the following graphic 
plots are often used.

(1) A normal probability plot of the residuals: In creating the regression model, 
we assume that the errors (ei) are distributed normally. After the systematic variation 
associated with the independent variables in the model has been removed from the data, 
the residuals should therefore resemble a sample from a normal distribution. The normal 
probability plot of standardized residuals is shown in Figure 13.10. The points appear 
to lie along a line with the exception of the one large residual value, giving support to 
the normality assumption. If the normality assumption does not appear to be valid, then 
we may need to transform the response variable. However, transformations are not 
innocuous and must be done with care (Kleinbaum et al. 1998).

(2) A plot of the residuals against the fi tted values: Figure 13.11 shows the stan-
dardized residuals plotted against the estimated values of the dependent variable with 
a useful reference line at zero. There is no strong pattern shown in the plot although the 
larger residuals in absolute value show a tendency to occur with estimated systolic blood 
pressure values over 130. If the trend were stronger, the equal variance assumption might 
be invalid and a transformation of the response variable might be required. If any clear 
patterns are shown in this plot, it raises concerns.

Table 13.11 Multiple regression analysis II: Systolic blood pressure regressed on weight and age.

Predictor Coef SE Coef T p VIF

Constant 77.185 8.668 8.91 <0.001
Weight 0.17727 0.04391 4.04 <0.001 1.0
Age 0.4064 0.1189 3.42 0.001 1.0

S = 13.66 R − Sq = 37.2%  R − Sq(adj) = 34.6%

ANOVA table:

Source DF SS MS F p

Regression 2 5,204.5 2,602.3 13.94 <0.001
Residual Error 47 8,776.3 186.7
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
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(3) A plot of residuals against each independent variable in the model: This plot 
helps in determining whether or not there may be a nonlinear relationship between the 
response variable and the independent variable used in the plot. Figure 13.12 shows the 
plot of residuals with the weight variable, and Figure 13.13 is a plot of the standardized 
residuals with the age variable. Neither plot shows the existence of any pattern. The 
presence of a curvilinear relationship, for example, would suggest that a higher-order 
term such as a quadratic term in the independent variable may be needed.

13.4.4   Multicollinearity Problems

In a multiple regression situation, it is not uncommon to have independent variables that 
are interrelated to a certain extent especially when survey data are used. Multicollinear-
ity occurs when an explanatory variable is strongly related to a linear combination of 
the other independent variables. Multicollinearity does not violate the assumptions of 
the model, but it does increase the variance of the regression coeffi cients. This increase 
means that the parameter estimates are less reliable. Severe multicollinearity also makes 
determining the importance of a given explanatory variable diffi cult because the effects 
of explanatory variables are confounded.

Figure 13.10 Normal 
probability plot of the 
standardized residuals.

Figure 13.11 Plot of 
standardized residual 
versus the fi tted value.
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Recognizing multicollinearity among a set of explanatory variables is not necessarily 
easy. Obviously, we can simply examine the scatterplot matrix or the correlations 
between these variables, but we may miss more subtle forms of multicollinearity. An 
alternative and more useful approach is to examine what are known as the variance 
infl ation factors (VIF) of the explanatory variables. The VIF for the jth independent 
variable is given by

VIF
R

j
j

=
−
1

1 2

where R2
j is the R2 from the regression of the jth explanatory variable on the remaining 

explanatory variables. The VIF of an explanatory variable indicates the strength of the 
linear relationship between the variable and the remaining explanatory variables. A 
rough rule of thumb is that the VIFs greater than 10 give some cause for concern.

Now let us review the multiple regression results shown in Tables 13.10 and 13.11. 
The VIFs shown in these tables are all less than 10, indicating that the multicollinearity 
does not pose a serious problem for those models. As a demonstration for a severe mul-
ticollinearity, we added to the model shown in Table 13.10 another independent variable 

Figure 13.12 Plot of 
the standardized 
residual versus the 
weight variable.

Figure 13.13 Plot of 
the standardized 
residual versus the age 
variable.
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that is closed associated with weight and height. Table 13.12 shows the multiple regres-
sion analysis of SBP on weight, age, height, and the body mass index (BMI) defi ned as 
your weight in kilograms divided by the square of your height in meters. The VIFs for 
weight, height, and BMI are all greater than 10 in Table 13.12. More important, the 
variances of the regression coeffi cients for weight and height increased, and these vari-
ables are no longer statistically signifi cant. The effect of weight on SBP shown in the 
earlier model cannot be demonstrated if we add BMI. A solution to a severe multicol-
linearity is to delete one of correlated variables. If we drop the BMI variable, we would 
eliminate the extreme multicollinearity.

Table 13.12 Multiple regression analysis III: Systolic blood pressure versus weight, age, height, body 
mass index.

Predictor Coef SE Coef T p VIF

Constant 105.2 154.4 0.68 0.499
Weight 0.3052 0.4413 0.69 0.493 97.6
Age 0.4364 0.1333 3.27 0.002 1.2
Height −0.354 2.246 −0.16 0.875 22.3
BMI −1.040 3.016 −0.34 0.732 60.9

S = 13.90 R − Sq = 37.8%  R − Sq(adj) = 32.3%

Analysis of Variance:

Source DF SS MS F p

Regression 4 5,289.4 1,322.4 6.85 <0.001
Residual Error 45 8,691.4 193.1
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
Height 1 61.9
BMI 1 23.0

 Indicator 
 Variables

Category x1 x2

Never Smoked 0 0 (reference)
Current Smoker 1 0
Previous Smoker 0 1

13.4.5   Extending the Regression Model: Dummy Variables

So far we limited our analysis to continuous independent variables. As we discussed 
briefl y in the previous chapter in conjunction with unbalanced ANOVA models, the 
independent variables can be categorical as well as continuous. It is easy to incorporate 
categorical explanatory variables into a multiple regression equation, provided we code 
the categorical variables with care. Let us consider the smoking status variable shown 
in Table 13.6. It has three levels: current smoker, never smoked, and previous smoker. 
Let us consider the never smoked category the baseline level and measure the effects 
of being a current smoker or a previous smoker from the never smoked level. We will 
then create two indicator variables to represent smoking status. The fi rst indicator vari-
able will have the value of 1 if the person is a current smoker and a value of 0 otherwise. 
The second indicator will have the value of 1 if the person is a former smoker and 0 
otherwise. If the person has never smoked, both the indicator variables are 0.
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The number of indicator variables we need to represent a categorical variable is one less 
than the number of categories, corresponding to the degrees of freedom for the 
variable.

To demonstrate the use of an indicator variable into a regression analysis, we added 
the gender variable (female = 0; male = 1) to the multiple regression model shown in 
Table 13.11. The regression analysis of systolic blood pressure on weight, age, and gender 
is shown in Table 13.13. The gender variable accounted for some variation in SBP, 
although it did not quite reach statistical signifi cance at the 0.05 level. The estimated 
regression equation is

SBP = 81.218 + 0.117 (weight) + 0.430 (age) + 8.990 (sex).

The predicted SBP for females with weight of 100  lbs and age of 50 is

81.218 + 0.117(100) + 0.430(50) + 8.990(0) = 114.418.

The predicted SBP for males with the same weight and age is

81.218 + 0.117(100) + 0.430(50) + 8.990(1) = 123.408.

The predicted value for males is 8.990  mmHg higher than the predicted value for 
females. In other words, the regression coeffi cient for sex represents the difference in 
the mean SBP between the indicated category (coded as 1, males in this case) and the 
reference category (coded as 0, females in this case), holding the other independent 
variables constant.

Multiple regression analysis is a very useful technique. It becomes even more useful 
through its ability to incorporate categorical predictor variables along with continuous 
predictor variables. If only categorical explanatory variables are used, we have the 
analysis of variance situation. All of these situations — linear regression, ANOVA, and 
multiple linear regression with a mixture of continuous and discrete predictor variables 
— fi t under the rubric of the General Linear Model (GLM).

See Program Note 13.3 on the website for conducting multiple regression analysis 
including the use of variable selection procedures and residual plots.

Table 13.13 Multiple regression analysis IV: Systolic blood pressure versus weight, age, sex 
(dummy variable).

Predictor Coef SE Coef T p VIF

Constant 81.218 8.689 9.35 <0.001
Weight 0.11749 0.05287 2.22 0.031 1.5
Age 0.4295 0.1162 3.69 0.001 1.0
Sex 8.990 4.685 1.92 0.061 1.5

S = 13.29 R − Sq = 41.9%  R − Sq(adj) = 38.1%

Analysis of Variance:

Source DF SS MS F p

Regression 3 5,854.8 1,951.6 11.05 <0.001
Residual Error 46 8,126.1 176.7
Total 49 13,980.9

Source DF Seq SS

Weight 1 3,021.9
Age 1 2,182.6
Sex 1 650.3
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Conclusion
In this chapter, we showed how to examine the relation between a normally distributed 
dependent variable and a continuous independent variable via linear regression analysis. 
We also demonstrated how this method could be extended to include many independent 
variables. We further expanded the linear regression model to include discrete predictor 
variables. These discrete predictor variables are incorporated through binary coding. 
Often we wish to use the linear regression or ANOVA idea, but the dependent variable 
is a binary variable — for example, the occurrence of a disease. In this case, the logistic 
regression method, discussed in the next chapter, can be used.

EXERCISES

13.1 Restenosis — narrowing of the blood vessels — frequently occurs after coro-
nary angioplasty, but accurate prediction of which individuals will have this 
problem is problematic. In a study by Simons et al. (1993), the authors hypoth-
esized that restenosis is more likely to occur if activated smooth-muscle cells 
in coronary lesions at the time of surgery are present. They used the number of 
reactive nuclei in the coronary lesions as an indicator of the presence of the 
activated smooth-muscle cells. The number of reactive nuclei in the lesions and 
the degree of stenosis at follow-up for 16 patients who underwent a second 
angiography are shown here.

 Degree of Stenosis Number of Reactive Nuclei
Patient (%) at Follow-up at Initial Surgery

 1 28 5
 2 15 3
 3 22 2
 4 93 10
 5 60 12
 6 90 25
 7 42 8
 8 53 3
 9 72 15
10 0 13
11 79 17
12 28 0
13 82 13
14 28 14
15 100 17
16 21 1

 Are you suspicious of any of these data points? If so, why? Does there appear 
to be a linear relation between the degree of stenosis and the number of reactive 
nuclei? If there is, describe the relation. Are there any points that have a large 
infl uence on the estimated regression line? If there are, eliminate the point with 
the greatest leverage and refi t the equation. Is there much difference between 
the two regression equations? Are there any points that have a large standard-
ized residual? Explain why the residuals are large for these points. Do you think 
that Simons et al. have a promising lead for predicting which patients will 
undergo restenosis?

13.2 Use the following data (NCHS 2005) to determine whether or not there is a 
linear relation between the U.S. national health expenditures as a percent of 
gross domestic product (GDP) and time.
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 What is your predicted value for national health expenditures as a percent of 
GDP for 2010? What is the 95 percent confi dence interval for your estimate? 
What data have you used as the basis of your predictions? What assumptions 
have you made?

13.3 The estimated age-adjusted percent of persons 18 years of age and over who 
smoke cigarettes are shown below for females and males for selected years 
(NCHS 2005).

 National Health Expenditures  National Health Expenditures
Year as Percentage of GDP Year as Percentage of GDP

1960 5.1 1999 13.2
1970 7.0 2000 13.3
1980 8.8 2001 14.1
1990 12.0 2002 14.9
1995 13.4
1997 13.1
1998 13.2

 Estimated Age-Adjusted
 Percent Smoking 
 Cigarettes

Year Female Male

1965 33.7 51.2
1974 32.2 42.8
1979 30.1 37.0
1985 27.9 32.2
1990 22.9 28.0
1995 22.7 26.5
1998 22.1 25.9
1999 21.6 25.2
2000 21.1 25.2
2001 20.7 24.6
2002 20.0 24.6
2003 19.4 23.7

 Describe the linear relation between the estimated age-adjusted percent smoking 
and time for females and males separately. How much of the variation in the 
percents is accounted for by time for females and for males? Do females and 
males appear to have the same rate of decrease in the estimated age-adjusted 
percent smoking? Provide an estimate when the age-adjusted percent of males 
who smoke will equal the corresponding percent for females. What assumption(s) 
have you made in coming up with the estimate of this time point? Do you think 
this assumption is reasonable? Explain your answer.

13.4 Use the data in Table 13.1 to construct height-based standards for systolic blood 
pressure for girls. In constructing these standards, you should be concerned 
about values that may be too low as well as too high.

13.5 Anderson et al. (Anderson 1990) provide serum cholesterol and body mass 
index (BMI) values for subjects who participated in a study to examine the 
effects of oat-bran cereal on serum cholesterol. The values of serum cholesterol 
and BMI for the 12 subjects included in the analysis are shown next.
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 Plot serum cholesterol versus BMI. Calculate the correlation coeffi cient between 
serum cholesterol and BMI. Regress serum cholesterol on BMI. Does there 
appear to be any linear relation between these two variables? Form a new vari-
able that is BMI minus its mean. Square this new variable. Include this new 
independent variable in the regression equation along with the BMI variable. 
Does there appear to be any linear relation between these two independent 
variables and serum cholesterol? Why do you think that we suggested that this 
new variable be added to the regression equation?

13.6 The following data are a sample of observations from the NHANES II. We wish 
to determine whether or not diastolic blood pressure (DBP) of adults can be 
predicted based on knowledge of the person’s body mass index (BMI — weight 
in kilograms divided by the square of height in meters), age, sex (females coded 
as 0 and males coded as 1), smoking status (not currently a smoker is coded 
as 0 and currently a smoker is coded as 1), race (0 represents nonblack and 1 
represents black), years of education, poverty status (household income 
expressed as a multiple of the poverty level for households of the same size), 
and vitamin status (0 indicates not taking supplements and 1 indicates taking 
supplements).

  Select an appropriate multiple regression model that shows the relation 
between DBP and the set or a subset of the independent variables shown here. 
Note that the independent variables include both continuous and discrete vari-
ables. Provide an interpretation of the estimated regression coeffi cients for each 
discrete independent variable used in the model. From these independent vari-
ables, are we able to do a good job of predicting DBP? What other independent 
variables, if any, should be included to improve the prediction of DBP?

 Serum cholesterol
Subject (mmol/L) BMI

 1 7.29 29.0
 2 8.04 26.3
 3 8.43 21.6
 4 7.96 21.8
 5 5.43 27.2
 6 5.77 24.8
 7 6.96 25.2
 8 6.23 24.5
 9 6.65 25.1
10 6.26 23.5
11 8.20 27.9
12 6.21 24.8

Vitamin      Poverty  Smoking
Status BMI Sex Race Education Age Index DBP Status

1 18.46 0 0 13 24 1.93 50 0
0 32.98 1 0 14 24 3.97 98 0
1 29.48 1 0 12 39 1.71 80 1
1 19.20 0 0 12 29 1.62 62 1
0 24.76 0 0 12 45 5.49 90 0
1 20.60 0 0 14 24 4.78 70 0
0 24.80 1 0 8 65 3.63 80 0
1 24.24 0 0 12 25 4.55 56 1
0 29.95 1 0 16 24 2.77 90 0
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13.7 Find an article from a health-related journal that used a multiple regression 
analysis and review it thoroughly. Is the multiple regression model an appropri-
ate choice of analysis? Would you conduct the analysis or interpret the result 
differently? Did your article report all the necessary analytical results that 
would convince you to accept the author’s conclusions?

13.8 The following data set consists of infant mortality rates (IMR) for 50 states in 
1997–1998, along with the following eight potential explanatory variables 
(NCHS 2004).

1. Low birthweight: Percent of live births with weight less than 2500 grams, 
1997–1999

2. Vaccination: Percent of children 19–35 months of age vaccinated against 
selected diseases, 1998

3. Medicaid expenditures as percent of total personal health care expenditures, 
1998

Vitamin      Poverty  Smoking
Status BMI Sex Race Education Age Index DBP Status

0 21.80 1 0 17 29 2.15 78 0
0 23.19 1 0 13 29 1.09 56 0
0 28.34 0 0 12 18 1.71 78 0
0 22.00 1 0 12 28 5.49 70 1
0 24.60 1 0  8 65 3.35 70 1
1 21.83 0 0 16 26 0.77 74 0
0 30.50 0 0  3 73 1.10 70 0
1 19.63 0 0 13 33 5.48 62 1
0 27.92 0 0 12 65 3.83 78 0
1 26.77 1 0 12 59 3.57 90 0
1 21.02 1 0 15 21 1.25 64 0
1 19.40 0 0 16 26 3.25 70 0
0 31.12 0 0 12 58 1.91 100 0
0 20.68 0 0  7 57 4.63 74 0
0 22.48 0 0 12 28 1.75 75 0
0 24.89 0 0 14 23 3.25 74 0
1 21.08 0 0 12 56 5.04 68 0
1 23.67 1 0 14 23 4.47 86 1
1 28.19 1 0 12 24 3.38 82 1
0 22.09 0 1  7 58 1.73 80 0
0 23.46 1 0 14 66 5.12 70 0
1 21.11 1 0 13 18 0.64 70 1
1 21.35 0 1 12 20 0.26 60 1
0 20.36 0 1 14 23 2.85 78 0
1 25.00 0 1  4 36 0.72 80 0
1 20.47 0 0 17 37 3.97 88 1
0 24.73 0 1  8 44 1.36 82 0
0 27.87 0 0 12 50 3.31 70 1
0 28.22 1 0 15 50 3.41 112 0
0 26.05 1 0 13 33 5.85 80 0
0 24.51 0 0 12 42 3.17 92 0
1 28.09 0 1 16 46 2.39 92 0
1 18.85 0 1 11 36 1.62 56 1
0 25.99 0 1 12 74 1.40 80 0
1 23.47 1 0 16 35 1.97 96 1
0 26.57 0 0 12 55 6.11 86 0
0 25.09 1 0 12 33 2.15 104 1
0 30.78 0 0 12 38 1.37 74 0
0 28.89 1 0 14 49 1.82 90 1
1 23.82 1 0 17 35 2.85 70 0
0 28.29 1 0 12 62 6.89 60 0
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384  Linear Regression

4. Prenatal care: Percent of live births with prenatal care started in the fi rst 
trimester, 1998

5. Uninsured: Percent of people under 65 years of age without health insurance, 
1998

6. Hospital care: Per capita expenditure in dollars for hospital care, 1998
7. Personal care: Per capita expenditure for personal health care, 1998
8. Personal care: Per capita expenditure for personal health care, 1996

 States are grouped in regions and the region can be another potential explana-
tory variable(s). Build an appropriate multiple regression model that would 
show the relationship between infant mortality rate and a subset of the potential 
explanatory variables (fi ve or fewer considering the total number of observa-
tions). Apply different criteria for selecting a subset and see whether different 
criteria give different results. Check whether various assumptions are met in 
your fi nal model. Interpret your analytical results, taking into account that these 
variables are measurements made at the state level. Do you think all relevant 
explanatory variables are represented in your model?

  Low      Personal

  Birth   Prenatal  Hospital Care

State IMR Weight Vaccination Medicaid Care Uninsured Care 1998 1996

East (New England & Mideast)
CT 6.8 7.56 90 17.5 88.8 14.3 1,478 4,656 4,250
ME 5.3 5.93 86 21.1 89.0 14.6 1,501 4,025 3,512
MA 5.1 6.99 87 19.3 89.3 11.6 1,807 4,810 4,347
NH 4.5 5.91 82 15.6 90.0 12.5 1,234 3,840 3,441
RI 6.5 7.43 86 21.6 90.1 7.6 1,626 4,497 3,978
VT 6.7 6.15 86 18.0 87.8 11.0 1,328 3,654 3,273
DE 6.5 8.01 82 12.5 81.4 17.1 1,581 5,258 3,847
MD 6.6 7.83 85 12.7 80.9 18.9 1,486 3,848 3,573
NJ 7.5 7.69 83 14.0 84.6 18.0 1,481 4,197 4,009
NY 8.5 7.96 78 31.5 82.6 19.7 1,769 4,706 4,346
PA 8.1 7.84 78 16.3 80.2 12.1 1,599 4,168 3,791
Midwest (Great Lakes & Plains)
IL 8.2 7.84 78 14.8 84.1 16.6 1,558 3,801 3,535
ID 7.8 7.78 78 12.0 85.7 16.1 1,413 3,566 3,196
MI 7.0 6.53 78 14.9 84.3 14.9 1,489 3,676 3,457
OH 6.5 6.31 82 15.6 87.5 11.7 1,437 3,747 3,542
WI 7.6 7.01 82 13.4 85.7 13.2 1,377 3,845 3,476
IA 5.9 5.92 82 15.4 84.4 10.9 1,520 3,765 3,368
KS 7.6 7.75 85 10.8 86.4 12.2 1,428 3,707 3,412
MN 7.8 6.75 76 15.4 84.1 10.3 1,254 3,986 3,614
MO 6.8 6.31 79 14.4 85.6 12.1 1,566 3,754 3,390
NE 7.4 5.75 74 14.4 82.7 10.2 1,507 3,627 3,287
ND 8.4 8.57 79 13.8 83.2 16.5 1,741 3,881 3,540
SD 7.3 8.09 79 13.4 83.8 16.3 1,534 3,650 3,253
South (Southeast & Southwest)
AL 8.7 8.68 80 13.0 86.5 19.5 1,432 3,630 3,422
AR 8.6 8.82 77 15.5 87.8 21.7 1,430 3,540 3,177
FL 9.2 8.84 83 10.4 84.5 21.1 1,371 4,046 3,774
GA 9.2 9.52 88 12.2 80.9 19.4 1,329 3,505 3,291
KY 7.7 7.80 80 16.9 85.2 16.0 1,479 3,711 3,300
LA 8.3 8.12 82 19.1 83.6 21.3 1,601 3,742 4,396
MS 10.0 9.28 82 15.8 82.6 22.9 1,551 3,474 3,145
NC 7.3 8.06 82 16.9 86.3 17.0 1,373 3,535 3,232
SC 10.5 10.18 84 16.6 80.7 17.4 1,480 3,529 3,131
TN 8.4 9.01 82 17.4 84.0 14.3 1,375 3,808 3,569
VA 9.0 8.62 73  9.9 77.5 15.8 1,286 3,284 3,009
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